Qun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5105519/publications.pdf

Version: 2024-02-01

50276 133252 6,479 60 46 59 citations h-index g-index papers 60 60 60 9091 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Biomimetic erythrocytes engineered drug delivery for cancer therapy. Chemical Engineering Journal, 2022, 433, 133498.	12.7	10
2	Manipulate intestinal organoids with niobium carbide nanosheets. Journal of Biomedical Materials Research - Part A, 2021, 109, 479-487.	4.0	12
3	Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale, 2021, 13, 10748-10764.	5.6	289
4	Gut Organoid as a New Platform to Study Alginate and Chitosan Mediated PLGA Nanoparticles for Drug Delivery. Marine Drugs, 2021, 19, 282.	4.6	51
5	Soft materials as biological and artificial membranes. Chemical Society Reviews, 2021, 50, 12679-12701.	38.1	35
6	A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry―polymeric prodrug for cancer therapy. Materials Science and Engineering C, 2020, 108, 110461.	7.3	43
7	Transport of artificial virus-like nanocarriers through intestinal monolayers <i>via</i> microfold cells. Nanoscale, 2020, 12, 16339-16347.	5.6	24
8	Near-Infrared Light-Triggered Porous AuPd Alloy Nanoparticles To Produce Mild Localized Heat To Accelerate Bone Regeneration. Journal of Physical Chemistry Letters, 2019, 10, 4185-4191.	4.6	76
9	Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration. ACS Nano, 2019, 13, 6372-6382.	14.6	188
10	Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics, 2019, 555, 49-62.	5.2	163
11	Alternative foaming agents for topical treatment of ulcerative colitis. Journal of Biomedical Materials Research - Part A, 2018, 106, 1448-1456.	4.0	13
12	Intestinal organoids containing poly(lacticâ€ <i>co</i> â€glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. Journal of Biomedical Materials Research - Part A, 2018, 106, 876-886.	4.0	92
13	<i>Ex Vivo</i> Study of Telluride Nanowires in Minigut. Journal of Biomedical Nanotechnology, 2018, 14, 978-986.	1.1	19
14	Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 2704-2715.	5.2	123
15	Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale, 2018, 10, 16962-16983.	5.6	130
16	Effects of six common dietary nutrients on murine intestinal organoid growth. PLoS ONE, 2018, 13, e0191517.	2.5	26
17	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	10.4	74
18	Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal. Journal of Hazardous Materials, 2017, 324, 365-372.	12.4	95

#	Article	IF	CITATIONS
19	Synthesis and <i>In Vitro</i> Characterization of Carboxymethyl Chitosan-CBA-Doxorubicin Conjugate Nanoparticles as pH-Sensitive Drug Delivery Systems. Journal of Biomedical Nanotechnology, 2017, 13, 1097-1105.	1.1	90
20	Self-Assembled Hyaluronic Acid Nanoparticles for pH-Sensitive Release of Doxorubicin: Synthesis and <i>In Vitro</i> Characterization. Journal of Biomedical Nanotechnology, 2017, 13, 1058-1068.	1.1	49
21	Redox Sensitive Shell and Core Crosslinked Hyaluronic Acid Nanocarriers for Tumor-Targeted Drug Delivery. Journal of Biomedical Nanotechnology, 2016, 12, 1641-1653.	1.1	60
22	Recent advances in liposome surface modification for oral drug delivery. Nanomedicine, 2016, 11, 1169-1185.	3.3	159
23	Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.	11.4	287
24	A pH-Sensitive Nanosystem Based on Carboxymethyl Chitosan for Tumor-Targeted Delivery of Daunorubicin. Journal of Biomedical Nanotechnology, 2016, 12, 1688-1698.	1.1	70
25	Construction of lysozyme exfoliated rectoriteâ€based electrospun nanofibrous membranes for bacterial inhibition. Journal of Applied Polymer Science, 2015, 132, .	2.6	56
26	An intestinal Trojan horse for gene delivery. Nanoscale, 2015, 7, 4354-4360.	5.6	60
27	Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91, 125-140.	13.7	190
28	Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015, 7, 4291-4305.	5.6	82
29	Adsorption mechanism of magnetically separable Fe 3 O 4 /graphene oxide hybrids. Applied Surface Science, 2015, 355, 562-569.	6.1	83
30	Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry B, 2015, 3, 6856-6870.	5.8	140
31	Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnology Advances, 2015, 33, 1855-1867.	11.7	314
32	Nanocomposite Hydrogels and Their Applications in Drug Delivery and Tissue Engineering. Journal of Biomedical Nanotechnology, 2015, 11, 40-52.	1.1	216
33	A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomaterials Science, 2015, 3, 1545-1554.	5.4	75
34	Ex Vivo Culture of Primary Intestinal Stem Cells in Collagen Gels and Foams. ACS Biomaterials Science and Engineering, 2015, 1, 37-42.	5.2	45
35	Heart-Targeted Nanoscale Drug Delivery Systems. Journal of Biomedical Nanotechnology, 2014, 10, 2038-2062.	1.1	37
36	Novel Layer-by-Layer Structured Nanofibrous Mats Coated by Protein Films for Dermal Regeneration. Journal of Biomedical Nanotechnology, 2014, 10, 803-810.	1.1	51

#	Article	IF	CITATIONS
37	Functional Nanoparticles in Targeting Glioma Diagnosis and Therapies. Journal of Nanoscience and Nanotechnology, 2014, 14, 415-432.	0.9	80
38	The role of glucose transporters in the distribution of p-aminophenyl- \hat{l}_{\pm} -d-mannopyranoside modified liposomes within mice brain. Journal of Controlled Release, 2014, 182, 99-110.	9.9	83
39	The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy. Biomaterials, 2014, 35, 3697-3707.	11.4	80
40	Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydrate Polymers, 2014, 99, 218-225.	10.2	86
41	Characterization and cytotoxicity study of nanofibrous mats incorporating rectorite and carbon nanotubes. RSC Advances, 2014, 4, 33355.	3.6	33
42	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	5.6	305
43	Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo. Journal of Materials Chemistry B, 2014, 2, 1619.	5.8	46
44	Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnology Advances, 2014, 32, 1301-1316.	11.7	260
45	Emerging nanostructured materials for musculoskeletal tissue engineering. Journal of Materials Chemistry B, 2014, 2, 6435-6461.	5.8	52
46	Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 2586-2593.	3.1	69
47	Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. Journal of Controlled Release, 2013, 172, 1020-1034.	9.9	193
48	Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano, 2013, 7, 4194-4201.	14.6	395
49	Vaccine-like Controlled-Release Delivery of an Immunomodulating Peptide To Treat Experimental Autoimmune Encephalomyelitis. Molecular Pharmaceutics, 2012, 9, 979-985.	4.6	65
50	PLGAâ€chitosan/PLGAâ€alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2011, 96A, 520-527.	4.0	126
51	Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, $2011, 83, 1128-1133$.	10.2	84
52	Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials, 2010, 31, 4980-4986.	11.4	159
53	Solid Lipid Nanoparticles as Insulin Inhalation Carriers for Enhanced Pulmonary Delivery. Journal of Biomedical Nanotechnology, 2009, 5, 84-92.	1.1	63
54	Adhesion of pancreatic beta cells to biopolymer films. Biopolymers, 2009, 91, 676-685.	2.4	44

#	Article	lF	CITATIONS
55	Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. International Journal of Pharmaceutics, 2008, 352, 273-279.	5.2	121
56	Chitosan/starch fibers and their properties for drug controlled release. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 398-404.	4.3	61
57	Alginate/polyethylene glycol blend fibers and their properties for drug controlled release. Journal of Biomedical Materials Research - Part A, 2007, 82A, 122-128.	4.0	60
58	Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydrate Polymers, 2007, 69, 336-343.	10.2	150
59	Alginate/gelatin blend films and their properties for drug controlled release. Journal of Membrane Science, 2006, 280, 37-44.	8.2	333
60	CHAPTER 12. Intestinal Tissue Engineering with Intestinal Stem Cells. RSC Smart Materials, 0, , 329-357.	0.1	4