Mikhail S. Novikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/51055/publications.pdf

Version: 2024-02-01

180 papers 3,302 citations

30 h-index 254184 43 g-index

225 all docs

225 docs citations

times ranked

225

1636 citing authors

#	Article	IF	CITATIONS
1	Blue Light-Promoted Cross-Coupling of α-Diazo Esters with Isocyanides: Synthesis of Ester-Functionalized Ketenimines. ACS Omega, 2022, 7, 9071-9079.	3.5	6
2	"Urea to Urea―Approach: Access to Unsymmetrical Ureas Bearing Pyridyl Substituents. Advanced Synthesis and Catalysis, 2022, 364, 1295-1304.	4.3	9
3	An Isoxazole Strategy for Molybdenum-Mediated Synthesis of 5-Mono- and 4,5-Disubstituted 1 <i>H</i> -Pyrrole-2,3-diones. Journal of Organic Chemistry, 2022, , .	3.2	7
4	Synthesis of Imidazo $[1,2-\langle i\rangle a\langle i\rangle]$ pyridines via Near UV Light-Induced Cyclization of Azirinylpyridinium Salts. Journal of Organic Chemistry, 2022, 87, 6514-6519.	3.2	9
5	One-Pot Synthesis of Multifunctionalized 1-Pyrrolines from 2-Alkyl-2 <i>H</i> -azirines and Diazocarbonyl Compounds. Journal of Organic Chemistry, 2022, 87, 8835-8840.	3.2	7
6	An Efficient Synthesis of Functionalized 2H-1,3,5-Oxadiazines via Metal-Carbenoid-Induced 1,2,4-Oxadiazole Ring Cleavage. Synthesis, 2021, 53, 348-358.	2.3	8
7	Buchner Reaction/Azirine Modification Approach Toward Cycloheptatriene Containing Nitrogen Heterocyclic Scaffolds. Journal of Organic Chemistry, 2021, 86, 4098-4111.	3.2	11
8	Isomerization of 5-(2H-Azirin-2-yl)oxazoles: An Atom-Economic Approach to 4H-Pyrrolo[2,3-d]oxazoles. Molecules, 2021, 26, 1881.	3.8	3
9	An Isoxazole Strategy for the Synthesis of Fully Substituted Nicotinates. Journal of Organic Chemistry, 2021, 86, 6888-6896.	3.2	12
10	Product selectivity of thermal Buchner reaction of methyl 2-(3-arylisoxazol-5-yl)-2-diazoacetates with benzene, naphthalene and mesitylene, and ring-opening/closing reaction of products. Tetrahedron, 2021, 88, 132153.	1.9	6
11	Redâ€toâ€NIR Iridium(III) Emitters: Synthesis, Photophysical and Computational Study, the Effects of Cyclometallating and βâ€Diketonate Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 2163-2170.	2.0	11
12	Rhodium-Catalyzed Denitrogenative Diazole–Triazole Coupling toward Aza-Bridged Structures and Imidazole-Based Chelating Ligands. Organic Letters, 2021, 23, 4173-4178.	4.6	7
13	2H-Azirines in medicinal chemistry. Chemistry of Heterocyclic Compounds, 2021, 57, 512-521.	1.2	9
14	Free-radical cyclization approach to polyheterocycles containing pyrrole and pyridine rings. Beilstein Journal of Organic Chemistry, 2021, 17, 1490-1498.	2.2	2
15	A Hydroxypyrrole Approach to 2,2′-Bi(4-pyrrolin-3-ones) and Pyrrolone-Based α-Amino Esters. Journal of Organic Chemistry, 2021, 86, 10368-10379.	3.2	O
16	Synthesis of Water-Soluble α-Aminopyrroles, 1-(2-Amino-1H-pyrrol-3-yl)pyridinium Chlorides. Russian Journal of General Chemistry, 2021, 91, 1424-1428.	0.8	3
17	Nucleophile-Induced Rearrangement of 2 <i>H</i> -Azirine-2-carbonyl Azides to 2-(1 <i>H</i> -Tetrazol-1-yl)acetic Acid Derivatives. Organic Letters, 2021, 23, 6362-6366.	4.6	7
18	Rhodium-Catalyzed Synthesis of 2-Aroylpyrimidines via Cascade Heteropolyene Rearrangement. Organic Letters, 2021, 23, 6998-7002.	4.6	10

#	Article	IF	CITATIONS
19	Electrocyclizations of Conjugated Azapolyenes Produced in Reactions of Azaheterocycles with Metal Carbenes. Organics, 2021, 2, 313-336.	1.3	2
20	Synthesis of 2-(2-Pyridyl)-2 <i>H</i> -azirines via Metal-Free C–C Cross-Coupling of Bromoazirines with 2-Stannylpyridines. Organic Letters, 2021, 23, 8045-8049.	4.6	4
21	Rh(<scp>ii</scp>)-Catalyzed denitrogenative 1-sulfonyl-1,2,3-triazole-1-alkyl-1,2,3-triazole cross-coupling as a route to 3-sulfonamido-1 <i>H</i> -pyrroles and 1,2,3-triazol-3-ium ylides. Organic Chemistry Frontiers, 2021, 8, 1474-1481.	4.5	7
22	An isoxazole strategy for the synthesis of alkyl 5-amino-4-cyano-1 <i>H</i> -pyrrole-2-carboxylates – versatile building blocks for assembling pyrrolo-fused heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 1976-1984.	2.8	11
23	Stereoselective assembly of 3,4-epoxypyrrolines <i>via</i> nucleophilic addition induced domino cyclization of 6-halo-1-oxa-4-azahexatrienes. Organic Chemistry Frontiers, 2020, 7, 525-530.	4.5	5
24	Synthesis of 3-Alkoxy-4-Pyrrolin-2-ones via Rhodium(II)-Catalyzed Denitrogenative Transannulation of $1 < i > H < /i > -1,2,3$ -Triazoles with Diazo Esters. Organic Letters, 2020, 22, 7958-7963.	4.6	24
25	New applications of pyridinium ylides toward heterocyclic synthesis. Tetrahedron, 2020, 76, 131415.	1.9	43
26	When periphery matters: Enhanced reactivity of 8-oxa-1,4-dithiaspiro[4.5]decane-7,9-dione and 9-oxa-1,5-dithiaspiro[5.5]undecane-8,10-dione in the Castagnoli-Cushman reaction with imines. Tetrahedron Letters, 2020, 61, 152658.	1.4	2
27	Azirine-containing dipeptides and depsipeptides: synthesis, transformations and antibacterial activity. Organic and Biomolecular Chemistry, 2020, 18, 9448-9460.	2.8	8
28	Acid-catalyzed rearrangement of 1-acyl-2-azabuta-1,3-dienes to 4-pyrrolin-2-ones. Chemistry of Heterocyclic Compounds, 2020, 56, 881-887.	1.2	3
29	Pseudopericyclic Dearomative 1,6 yclization of 1â€(2â€Pyridyl)â€2â€azabutaâ€1,3â€dienes: Synthesis and Riv Valence Equilibria of 4 <i>H</i> àê€Pyrido[1,2â€ <i>a</i>]pyrazines. European Journal of Organic Chemistry, 2020, 2020, 2904-2913.	ng–Cha 2.4	in 17
30	A biocompatible phosphorescent Ir(<scp>iii</scp>) oxygen sensor functionalized with oligo(ethylene) Tj ETQq0 0 Chemistry, 2020, 44, 10459-10471.	0 rgBT /O 2.8	verlock 10 T 22
31	Regiodivergent Synthesis of Butenolide-Based \hat{l}_{\pm} - and \hat{l}_{\pm} -Amino Acid Derivatives via Base-Controlled Azirine Ring Expansion. Organic Letters, 2020, 22, 3023-3027.	4.6	12
32	2 <i>H</i> -Azirine-2-carbonyl Azides: Preparation and Use as N-Heterocyclic Building Blocks. Journal of Organic Chemistry, 2020, 85, 4182-4194.	3.2	22
33	1-(2 <i>H</i> -Azirine-2-carbonyl)benzotriazoles: building blocks for the synthesis of pyrrole-containing heterocycles. Organic and Biomolecular Chemistry, 2020, 18, 2283-2296.	2.8	11
34	Synthesis of Bi-, Ter-, and Quaterpyridinecarboxylates via Propargylisoxazole–Pyridine Rearrangement. Journal of Organic Chemistry, 2020, 85, 6109-6122.	3.2	7
35	A Baseâ€Controlled Reaction of 2â€Cyanoacetamidines (3,3â€Diaminoacrylonitriles) with Sulfonyl Azides as a Route to Nonaromatic 4â€Methyleneâ€1,2,3â€triazoleâ€5â€imines. European Journal of Organic Chemistry, 20 2020, 3688-3698.	20,4	7
36	Isoxazole Strategy for the Synthesis of α-Aminopyrrole Derivatives. Journal of Organic Chemistry, 2019, 84, 11275-11285.	3.2	37

#	Article	IF	CITATIONS
37	α-Acyl-α-diazoacetates in Transition-Metal-Free β-Lactam Synthesis. Journal of Organic Chemistry, 2019, 84, 12101-12110.	3.2	19
38	Selective Cu-Catalyzed Intramolecular Annulation of 3-Aryl/Heteryl-2-(diazoacetyl)-1 <i>H</i> -pyrroles: Synthesis of Benzo/Furo/Thieno[<i>e</i> -]-Fused 1 <i>H</i> -Indol-7-oles and Their Transformations. Journal of Organic Chemistry, 2019, 84, 10388-10401.	3.2	20
39	Synthesis of Isoxazole- and Oxazole-4-carboxylic Acids Derivatives by Controlled Isoxazole-Azirine-Isoxazole/Oxazole Isomerization. Journal of Organic Chemistry, 2019, 84, 15567-15577.	3.2	19
40	Near-Infrared [Ir(N ^{â^§} C) ₂ (N ^{â^§} N)] ⁺ Emitters and Their Noncovalent Adducts with Human Serum Albumin: Synthesis and Photophysical and Computational Study. Organometallics, 2019, 38, 3740-3751.	2.3	20
41	Easy Access to 2-Fluoro- and 2-lodo-2H-azirines via the Halex Reaction. Synthesis, 2019, 51, 4582-4589.	2.3	11
42	Synthesis of 1-(2-Aminovinyl)indoles and 1,3′-Biindoles by Reaction of 2,2-Diaryl-Substituted 2 <i>H</i> -Azirines with α-Imino Rh(II) Carbenoids. Journal of Organic Chemistry, 2019, 84, 3743-3753.	3.2	28
43	$[2+1+1]$ Assembly of spiro \hat{l}^2 -lactams by Rh($\langle scp \rangle ii\langle scp \rangle$)-catalyzed reaction of diazocarbonyl compounds with azirines/isoxazoles. Organic and Biomolecular Chemistry, 2019, 17, 6821-6830.	2.8	25
44	2 <i>H</i> -Azirines as C–C Annulation Reagents in Cu-Catalyzed Synthesis of Furo[3,2- <i>c</i>)quinolone Derivatives. Organic Letters, 2019, 21, 3615-3619.	4.6	21
45	Transition Metalâ€Catalyzed Synthesis of 3â€Coumaranoneâ€Containing NHâ€Aziridines from 2 <i>H</i> †i>â€Azirines: Nickel(II) versus Gold(I). Advanced Synthesis and Catalysis, 2019, 361, 3359-3372.	4.3	14
46	Advances in 2H-azirine chemistry: A seven-year update. Tetrahedron, 2019, 75, 2555-2624.	1.9	103
47	Isoxazole Strategy for the Synthesis of 2,2′-Bipyridine Ligands: Symmetrical and Unsymmetrical 6,6′-Binicotinates, 2,2′-Bipyridine-5-carboxylates, and Their Metal Complexes. Journal of Organic Chemistry, 2019, 84, 3524-3536.	3.2	22
48	One-pot synthesis of 3-(pyridin-2-yl)-2,3-dihydroazetes via Rh(II)-catalyzed reaction of diazoesters with trimethylsilyl-protected 2-(pyridin-2-yl)-2H-azirines. Chemistry of Heterocyclic Compounds, 2019, 55, 1185-1189.	1.2	5
49	Non-natural 2 <i>H</i> -azirine-2-carboxylic acids: an expedient synthesis and antimicrobial activity. RSC Advances, 2019, 9, 37901-37905.	3.6	11
50	Facile access to 2-acyloxy-, aryloxy- and alkenyloxy-2 <i>H</i> -azirines <i>via</i> an S _N 2′–S _N 2′ cascade in 2-halo-2 <i>H</i> -azirines. Organic and Biomolecular Chemistry, 2018, 16, 3248-3257.	2.8	13
51	Fe(II)-Catalyzed Isomerization of 5-Chloroisoxazoles to 2 <i>H</i> -Azirine-2-carbonyl Chlorides as a Key Stage in the Synthesis of Pyrazole–Nitrogen Heterocycle Dyads. Journal of Organic Chemistry, 2018, 83, 3177-3187.	3.2	32
52	Bicyclic Piperazine Mimetics of the Peptide β-Turn Assembled via the Castagnoli–Cushman Reaction. Journal of Organic Chemistry, 2018, 83, 5859-5868.	3.2	14
53	Synthesis and properties of new heterocyclic betaines: 4-Aryl-5-(methoxycarbonyl)-2-oxo-3-(pyridin-1-ium-1-yl)-2,3-dihydro-1 H -pyrrol-3-ides. Tetrahedron, 2018, 74, 2466-2474.	1.9	11
54	A novel approach to 5 <i>H</i> -pyrazino[2,3- <i>b</i>]indoles <i>via</i> annulation of 3-diazoindolin-2-imines with 2 <i>H</i> -azirines or 5-alkoxyisoxazoles under Rh(<scp>ii</scp>) catalysis. Organic and Biomolecular Chemistry, 2018, 16, 38-42.	2.8	26

#	Article	IF	CITATIONS
55	Expedient synthesis of 3-hydroxypyrroles <i>via</i> Bu ₃ SnH-triggered ionic 5- <i>exo-trig</i> -cyclization of 5-chloro-3-azamuconoate derivatives. Organic Chemistry Frontiers, 2018, 5, 3396-3401.	4.5	18
56	An Azirine Strategy for the Synthesis of Alkyl 4-Amino-5-(trifluoromethyl)-1H-pyrrole-2-carboxylates. Synthesis, 2018, 50, 4809-4822.	2.3	20
57	Synthesis of spirocyclic 3Еpyrrol-4-amines from 2H-azirines and 1-sulfonyl-1,2,3-triazoles. Chemistry of Heterocyclic Compounds, 2018, 54, 946-950.	1.2	7
58	Synthesis of 2-(Di/tri/tetraazolyl)-2 <i>H</i> -azirine-2-carboxylates by Halogen Substitution: Evidence for an S _N 2′-S _N 2′ Cascade Mechanism. Journal of Organic Chemistry, 2018, 83, 13473-13480.	3.2	9
59	Synthesis of N-aminopyrazoles by Fe(II)-catalyzed rearrangement of 4-hydrazonomethyl-substituted isoxazoles. Tetrahedron, 2018, 74, 6288-6298.	1.9	10
60	Synthesis of Substituted Indole-3-carboxylates by Iron(II)-Catalyzed Domino Isomerization of 3-Alkyl/aryl-4-aryl-5-methoxyisoxazoles. Synthesis, 2018, 50, 2784-2798.	2.3	14
61	2-Diazoacetyl-2 <i>H</i> -azirines: Source of a Variety of 2 <i>H</i> -Azirine Building Blocks with Orthogonal and Domino Reactivity. Journal of Organic Chemistry, 2018, 83, 8304-8314.	3.2	27
62	Rh(II)-Catalyzed Transannulation of 1,2,4-Oxadiazole Derivatives with 1-Sulfonyl-1,2,3-triazoles: Regioselective Synthesis of 5-Sulfonamidoimidazoles. Journal of Organic Chemistry, 2018, 83, 11232-11244.	3.2	31
63	Modern Trends of Organic Chemistry in Russian Universities. Russian Journal of Organic Chemistry, 2018, 54, 157-371.	0.8	68
64	Rh(II)-Catalyzed Ring Expansion of Pyrazoles with Diazocarbonyl Compounds as a Method for the Preparation of 1,2-Dihydropyrimidines. Journal of Organic Chemistry, 2018, 83, 9210-9219.	3.2	24
65	Pyrazoles and <i>C</i> â€Imidoylaziridines through [4+1] Annulation and [2+1] Cycloaddition of 1â€Azabutaâ€1,3â€dienes with a Synthetic Equivalent of Phthalimidonitrene. European Journal of Organic Chemistry, 2017, 2017, 2587-2595.	2.4	4
66	Non-pericyclic cycloaddition of gem-difluorosubstituted azomethine ylides to the Cî€O bond: computational study and synthesis of fluorinated oxazole derivatives. Organic and Biomolecular Chemistry, 2017, 15, 4579-4586.	2.8	7
67	Fe(II)/Au(I) Relay Catalyzed Propargylisoxazole to Pyridine Isomerization: Access to 6-Halonicotinates. Journal of Organic Chemistry, 2017, 82, 5367-5379.	3.2	34
68	Annulation of five-membered cyclic enols with 3-aryl-2H-azirines: Catalytic versus non-catalytic cycloaddition. Tetrahedron, 2017, 73, 4663-4670.	1.9	22
69	Switchable Synthesis of 4,5-Functionalized 1,2,3-Thiadiazoles and 1,2,3-Triazoles from 2-Cyanothioacetamides under Diazo Group Transfer Conditions. Journal of Organic Chemistry, 2017, 82, 4056-4071.	3.2	34
70	Switchable Synthesis of Pyrroles and Pyrazines via Rh(II)-Catalyzed Reaction of 1,2,3-Triazoles with Isoxazoles: Experimental and DFT Evidence for the 1,4-Diazahexatriene Intermediate. Journal of Organic Chemistry, 2017, 82, 256-268.	3.2	58
71	NHC as the Guiding Factor in a Copper-Catalyzed Intramolecular C Arylation of Pyrrolylimidazolium Salts: Synthesis of Luminescent Heterotetracyclic Frameworks. Journal of Organic Chemistry, 2017, 82, 616-623.	3.2	13
72	Synthesis, crystal structure, and photophysical properties of dimethyl 7-oxa-2a1-azabenzo[b]cyclopenta[pq]pleiadene-1,2-dicarboxylate – novel fused oxazapolycyclic skeleton. Chemistry of Heterocyclic Compounds, 2017, 53, 909-912.	1.2	3

#	Article	IF	Citations
73	Rh2(OAc)4-catalyzed reaction of 2-(2-carbonylvinyl)-3-phenyl-2H-azirines with diazo esters. Russian Journal of Organic Chemistry, 2017, 53, 1214-1221.	0.8	6
74	4-Diazo and 4-(Triaz-1-en-1-yl)-1 <i>H</i> -pyrrole-2-carboxylates as Agents Inducing Apoptosis. ChemistrySelect, 2017, 2, 7508-7513.	1.5	6
75	Fe(II)-Catalyzed Isomerization of 4-Vinylisoxazoles into Pyrroles. Journal of Organic Chemistry, 2017, 82, 8568-8579.	3.2	42
76	Metal-Catalyzed Isomerization of 5-Heteroatom-Substituted IsoxazolesÂ-as a New Route to 2-Halo-2H-azirines. Synthesis, 2017, 28, 4478-4488.	2.3	12
77	Synthesis of 2-halo-2Еazirine-2-carboxylic acid amides and esters by isomerization of 5-(dialkylamino/alkoxy)-substituted isoxazoles, catalyzed by iron(II) sulfate. Chemistry of Heterocyclic Compounds, 2017, 53, 1068-1071.	1.2	20
78	Synthesis of 1,2-Dihydropyrimidine-2-carboxylates via Regioselective Addition of Rhodium(II) Carbenoids to 2 <i>H</i> -Azirine-2-carbaldimines. Journal of Organic Chemistry, 2017, 82, 13396-13404.	3.2	21
79	Two-atom azirine ring expansion reaction of methyl 2-diazo-3-(4-methoxyphenyl)-3-oxopropanoate via a dirhodium tetraacetate-catalyzed Wolff rearrangement. Chemistry of Heterocyclic Compounds, 2017, 53, 985-988.	1.2	6
80	Synthesis of Pyrrolotriazoloisoquinoline Frameworks by Intramolecular Cu-Mediated or Free Radical Arylation of Triazoles. Journal of Organic Chemistry, 2017, 82, 7583-7594.	3.2	11
81	(3Z)-2-azahexa-1,3,5-trienes: Generation and regioselectivity of 1,5- and 1,6-cyclizations. Russian Journal of Organic Chemistry, 2016, 52, 1851-1853.	0.8	6
82	A novel strategy for the synthesis of thermally stable and apoptosis-inducing 2,3-dihydroazetes. Organic and Biomolecular Chemistry, 2016, 14, 4479-4487.	2.8	37
83	Synthesis, Transformations of Pyrrole- and 1,2,4-Triazole-Containing Ensembles, and Generation of Pyrrole-Substituted Triazole NHC. Journal of Organic Chemistry, 2016, 81, 11210-11221.	3.2	24
84	Synthesis and Intramolecular Azo Coupling of 4-Diazopyrrole-2-carboxylates: Selective Approach to Benzo and Hetero [c]-Fused 6H-Pyrrolo[3,4-c]pyridazine-5-carboxylates. Journal of Organic Chemistry, 2016, 81, 8495-8507.	3.2	30
85	Isoxazole-azirine isomerization as a reactivity switch in the synthesis of heterocycles. Chemistry of Heterocyclic Compounds, 2016, 52, 637-650.	1.2	40
86	Azirinium ylides from \hat{l} ±-diazoketones and 2 <i>H</i> -azirines on the route to 2 <i>H</i> -1,4-oxazines: three-membered ring opening vs 1,5-cyclization. Beilstein Journal of Organic Chemistry, 2015, 11, 302-312.	2.2	21
87	Fe(II)/Et3N-Relay-catalyzed domino reaction of isoxazoles with imidazolium salts in the synthesis of methyl 4-imidazolylpyrrole-2-carboxylates, its ylide and betaine derivatives. Beilstein Journal of Organic Chemistry, 2015, 11, 1732-1740.	2.2	15
88	Recent advances in isoxazole chemistry. Russian Chemical Reviews, 2015, 84, 335-377.	6.5	77
89	4-Halo-2-azabuta-1,3-dienes as intermediates in the rhodium carbenoid-initiated transformation of 2-halo-2H-azirines into 2,3-dihydroazetes and 2,5-dihydrooxazoles. Tetrahedron, 2015, 71, 4616-4628.	1.9	39
90	Synthesis of 3-(1,2-dioxoethyl)- and 2,3-dicarbonyl-containing pyrroles. Tetrahedron, 2015, 71, 1940-1951.	1.9	30

#	Article	IF	Citations
91	Domino transformation of isoxazoles to 2,4-dicarbonylpyrroles under Fe/Ni relay catalysis. RSC Advances, 2015, 5, 18172-18176.	3.6	44
92	Metal/organo relay catalysis in a one-pot synthesis of methyl 4-aminopyrrole-2-carboxylates from 5-methoxyisoxazoles and pyridinium ylides. Organic and Biomolecular Chemistry, 2015, 13, 9825-9833.	2.8	18
93	Ring Expansions of Azirines and Azetines. Topics in Heterocyclic Chemistry, 2015, , 143-232.	0.2	31
94	A new heterocyclic skeleton with highly tunable absorption/emission wavelength via H-bonding. RSC Advances, 2015, 5, 94551-94561.	3.6	18
95	Cu(I)–NHC-Catalyzed (2 + 3)-Annulation of Tetramic Acids with 2 <i>H</i> -Azirines: Stereoselective Synthesis of Functionalized Hexahydropyrrolo[3,4- <i>b</i>)pyrroles. Organic Letters, 2015, 17, 4148-4151.	4.6	42
96	Pseudopericyclic 1,5- versus Pericyclic 1,4- and 1,6-Electrocyclization in Electron-Poor 4-Aryl-2-azabuta-1,3-dienes: Indole Synthesis from $2 < i > H < /i >$ -Azirines and Diazo Compounds. Journal of Organic Chemistry, 2015, 80, 18-29.	3.2	42
97	Domino reactions of 2 <i>H</i> -azirines with acylketenes from furan-2,3-diones: Competition between the formation of <i>ortho</i> -fused and bridged heterocyclic systems. Beilstein Journal of Organic Chemistry, 2014, 10, 784-793.	2.2	18
98	Selective syntheses of 2H-1,3-oxazines and 1H-pyrrol-3(2H)-ones via temperature-dependent Rh(II)-carbenoid-mediated 2H-azirine-ring expansion. Tetrahedron, 2014, 70, 3377-3384.	1.9	26
99	A simple approach to pyrrolylimidazole derivatives by azirine ring expansion with imidazolium ylides. Organic and Biomolecular Chemistry, 2014, 12, 6598-6609.	2.8	20
100	Isoxazolium N-ylides and 1-oxa-5-azahexa-1,3,5-trienes on the way from isoxazoles to 2 <i>H</i> -1,3-oxazines. Beilstein Journal of Organic Chemistry, 2014, 10, 1896-1905.	2.2	26
101	Cu(ii)-catalyzed domino reaction of 2H-azirines with diazotetramic and diazotetronic acids. Synthesis of 2-substituted 2H-1,2,3-triazoles. Organic and Biomolecular Chemistry, 2013, 11, 5535.	2.8	38
102	Recent advances in 2H-azirine chemistry. Tetrahedron, 2013, 69, 3363-3401.	1.9	181
103	Rh(II)-carbenoid mediated 2H-azirine ring-expansion as a convenient route to non-fused photo- and thermochromic 2H-1,4-oxazines. Tetrahedron, 2013, 69, 4292-4301.	1.9	38
104	Rh2(OAc)4-catalyzed reaction of \hat{l} ±-diazocarbonyl compounds with 2-carbonyl-substituted 2H-azirines. Tetrahedron, 2013, 69, 4546-4551.	1.9	24
105	Intramolecular cycloaddition of azomethine ylides, from imines of O-acylsalicylic aldehyde and ethyl diazoacetate, to ester carbonyl $\hat{a} \in \hat{s}$ experimental and DFT computational study. Organic and Biomolecular Chemistry, 2012, 10, 5582.	2.8	17
106	Synthesis of electron-poor 4-halo-2-azabuta-1,3-dienes by Rh(II)-catalyzed diazo ester–azirine coupling. 2-Azabuta-1,3-diene-2,3-dihydroazete valence isomerism. Tetrahedron Letters, 2012, 53, 5777-5780.	1.4	19
107	A Novel Strategy for the Synthesis of 3-(<i>N</i> -Heteryl)pyrrole Derivatives. Organic Letters, 2012, 14, 3768-3771.	4.6	48
108	Fused aziridines as sources of azomethine ylides. Chemistry of Heterocyclic Compounds, 2012, 48, 179-190.	1,2	14

#	Article	IF	CITATIONS
109	Nonconcerted Cycloaddition of $2 < i > H < /i > -Azirines$ to Acylketenes: A Route to N-Bridgehead Heterocycles. Journal of Organic Chemistry, 2011, 76, 9344-9352.	3.2	18
110	An Aza Cyclopropylcarbinyl-Homoallyl Radical Rearrangement–Radical Cyclization Cascade. Synthesis of Dibenzoimidazoazepine and Oxazepine Derivatives. Journal of Organic Chemistry, 2011, 76, 5384-5391.	3.2	19
111	An efficient approach to azirino and pyrrolo-fused dibenzazepines. Conformations of substituted dibenzo[c,f]pyrrolo[1,2-a]azepines. Organic and Biomolecular Chemistry, 2011, 9, 3886.	2.8	28
112	A Novel Rearrangement of Cyclic Glutamine Derivatives: Ring Contraction in 3,6â€Diaminoâ€2,3,4,5â€tetrahydropyridinâ€2â€ones to Yield 5â€lminoproline Amides. European Journal of Orga Chemistry, 2011, 2011, 4093-4097.	an i c4	2
113	Formation and reactivity of gem-difluoro-substituted pyridinium ylides: Experimental and DFT investigation. Journal of Fluorine Chemistry, 2011, 132, 175-180.	1.7	13
114	Strained iminium ylides. Russian Journal of General Chemistry, 2010, 80, 1652-1666.	0.8	10
115	Monofluorinated aziridines in asymmetric synthesis of chiral fluorinated prop-2-yn-1-amines. Russian Journal of Organic Chemistry, 2010, 46, 976-986.	0.8	4
116	Bicyclic Sultams with a Nitrogen at the Bridgehead and a Sulfur Atom in the Apex Position: Facile Preparation and Conformational Properties. European Journal of Organic Chemistry, 2010, 2010, 3481-3486.	2.4	16
117	Stereoselective Cycloaddition of Dibenzoxazepinium Ylides to Acetylenes and Fullerene $C \in Sub > 60 < sub > 6$	3.2	31
118	Facile Access to Bicyclic Sultams with Methyl 1â€6ulfonylcyclopropaneâ€1 arboxylate Moieties. European Journal of Organic Chemistry, 2009, 2009, 2635-2641.	2.4	32
119	Rh(II)-Catalysed reactions of 2H-azirines with ethyl 2-acyl-2-diazoacetates. Synthesis of novel photochromic oxazines. Tetrahedron Letters, 2009, 50, 6509-6511.	1.4	32
120	Dibenzoxazepinium Ylides: Facile Access and 1,3-Dipolar Cycloaddition Reactions. Organic Letters, 2009, 11, 979-982.	4.6	35
121	1,3- vs. 1,5-cyclization of azomethine ylides derived from 1-azabuta-1,3-dienes and difluoro- and dichlorocarbenes. Experimental and quantum-chemical study. Arkivoc, 2009, 2008, 94-115.	0.5	12
122	Azirino[c]imidazolyl ylides in the domino reaction of 2,2-dialkyl-4,6-diaryl-1,3-diazabicyclo[3.1.0]hex-3-enes with dichlorocarbenes. Synthesis of (1RS,5SR,) Tj ETQq0 0 Compounds, 2008, 44, 576-584.	0 _{1.2} BT /O	verlock 10 T
123	Isomerization and 1,3-dipolar cycloaddition of gem-difluorinated NH-azomethine ylides in the reaction of difluorocarbene with diarylmethanimines. Russian Chemical Bulletin, 2008, 57, 1070-1079.	1.5	5
124	Fluoroaziridines as novel substrates in the modified Petasis reaction: synthesis of monofluorinated propargyl amines. Tetrahedron, 2008, 64, 117-123.	1.9	16
125	gem-Difluorosubstituted NH-azomethine ylides in the synthesis of 4-fluorooxazolines via the three-component reaction of imines, trifluoroacetophenones and CF2Br2. Tetrahedron Letters, 2008, 49, 1237-1240.	1.4	22
126	Synthesis and reactivity of 3-(2-chloroalkyl)-2,2-dihaloaziridines. Tetrahedron, 2008, 64, 7524-7530.	1.9	14

#	Article	IF	CITATIONS
127	A Convenient Access to 3-(Trihalomethyl)-3-phenyl-3,4-dihydro-2H-1,4-benzÂoxazines/thiazines and Chlorinated 3-Phenyl-2,3-dihydro-1,5-benzoxazepines/thiazepines by an Aziridination-Selective-Ring-Opening Sequence. Synthesis, 2007, 2007, 225-230.	2.3	2
128	Monofluoro-substituted azomethine ylides in fluorocarbene reactions with imines. Synthesis and transformations of monofluoroaziridines. Russian Journal of Organic Chemistry, 2007, 43, 286-296.	0.8	21
129	New type of transannular reactions in azirine-fused medium-size heterocycles: Selective transformations of azirino[2,1-e][1,6]benzoxazocines and -benzothiazocines into oxa(thia)zine and oxa(thia)zole derivatives. Russian Journal of Organic Chemistry, 2007, 43, 1065-1079.	0.8	10
130	A simple route to side-chain fluorinated \hat{l}^2 -lactams from ring-fluorinated aziridines. Journal of Fluorine Chemistry, 2007, 128, 114-119.	1.7	9
131	Fluorinated 4H-1,3-diazepines by reaction of difluorocarbene with 2H-azirines. Tetrahedron Letters, 2006, 47, 639-642.	1.4	30
132	Azirinium ylides from alkoxycarbonylcarbenoids and 2H-azirines: Generation and transformations. Russian Journal of Organic Chemistry, 2006, 42, 515-526.	0.8	29
133	Reactions of 1,5-Ï€-cyclization of gem-difluoro-substituted azomethine ylides involving an aromatic ring. Russian Journal of Organic Chemistry, 2006, 42, 689-695.	0.8	13
134	Regioselectivity of the 1,3-dipolar cycloaddition of fluorinated fluoren-9-iminium ylides to heteroelement-containing dipolarophiles: Experimental and quantum-chemical study. Russian Journal of Organic Chemistry, 2006, 42, 1800-1812.	0.8	5
135	New Tandem Reactions of Metal Carbenoids. Intermolecular Formation of Azomethine Ylide from Methyl 2-Diazo-2-phenylacetate and Schiff Base: Intramolecular 1,3-Dipolar Cycloaddition ChemInform, 2006, 37, no.	0.0	0
136	The first example of the generation of azomethine ylides from a fluorocarbene: 1,3-cyclization and 1,3-dipolar cycloaddition. Tetrahedron Letters, 2005, 46, 8337-8340.	1.4	47
137	Reaction of Difluorocarbene with 2H-Azirines: Generation and Transformations of Strained Azomethine Ylides? Aziriniodifluoromethanides ChemInform, 2005, 36, no.	0.0	0
138	Azomethine Ylides Derived from Dichlorocarbene and O-Acylsalicylaldehyde Anils in the Synthesis of 2,5-Epoxy-2,3,4,5-tetrahydro-1,4-benzoxazepin-2-ones and 2-Aminoethanols Chemlnform, 2005, 36, no.	0.0	0
139	1,3-Dipolar Cycloaddition of Fluorinated Azomethine Ylides at the C=N Bond ChemInform, 2005, 36, no.	0.0	0
140	Iminium Ylides from Carbenes and Carbenoids: Generation and Synthetic Applications. ChemInform, 2005, 36, no.	0.0	0
141	Intramolecular Cycloaddition of Geminal Dichloroazomethine Ylides to Multiple Carbon—Carbon Bonds ChemInform, 2005, 36, no.	0.0	1
142	Intramolecular 1,3-Dipolar Cycloaddition of Geminal Difluoro Azomethine Ylides at Multiple Carbonâ€"Carbon Bonds ChemInform, 2005, 36, no.	0.0	0
143	Reaction of Fluoro(phenyl)carbene with Schiff Bases: Synthesis of 2-Fluoro-2-phenylaziridines. Russian Journal of General Chemistry, 2005, 75, 1643-1647.	0.8	4
144	Intramolecular 1,3-Dipolar Cycloaddition of Geminal Difluoro Azomethine Ylides at Multiple Carbon-Carbon Bonds. Russian Journal of Organic Chemistry, 2005, 41, 361-369.	0.8	10

#	Article	IF	Citations
145	Intramolecular Cycloaddition of Geminal Dichloroazomethine Ylides to Multiple Carbon-Carbon Bonds. Russian Journal of Organic Chemistry, 2005, 41, 560-566.	0.8	8
146	New Tandem Reactions of Metal Carbenoids. Intermolecular Formation of Azomethine Ylide from Methyl 2-Diazo-2-phenylacetate and Schiff Base: Intramolecular 1,3-Dipolar Cycloaddition. Russian Journal of Organic Chemistry, 2005, 41, 922-932.	0.8	9
147	Intramolecular 1,3-Dipolar Cycloaddition of Azomethine Ylides Generated from Ethoxycarbonylcarbenoids and Schiff Bases. Russian Journal of Organic Chemistry, 2005, 41, 1341-1348.	0.8	14
148	1,3-Dipolar Cycloaddition of Difluoro-Substituted Azomethine Ylides. Synthesis and Transformations of 2-Fluoro-4,5-dihydropyrroles. Russian Journal of Organic Chemistry, 2005, 41, 1496-1506.	0.8	12
149	Iminium ylides from carbenes and carbenoids: generation and synthetic applications. Russian Chemical Reviews, 2005, 74, 171-192.	6.5	43
150	Synthesis of 6,6-Difluorocyclopropa[b]furo[2,3-c]pyrrole and 7-FluoroÂfuro[3,2-c]pyridine Derivatives via 1,5-Electrocyclization of Carbene-Derived Azomethine Ylides. Synlett, 2005, 2005, 1006-1008.	1.8	2
151	Selective transannular ring transformations in azirino-fused eight-membered O,N- or S,N-heterocycles. Organic and Biomolecular Chemistry, 2005, 3, 4040.	2.8	16
152	Azomethine ylides derived from dichlorocarbene and O-acylsalicylaldehyde anils in the synthesis of 2,5-epoxy-2,3,4,5-tetrahydro-1,4-benzoxazepin-2-ones and 2-aminoethanols. Russian Chemical Bulletin, 2004, 53, 1087-1091.	1.5	7
153	Reaction of difluorocarbene with 2H-azirines: generation and transformations of strained azomethine ylides — aziriniodifluoromethanides. Russian Chemical Bulletin, 2004, 53, 1092-1101.	1.5	13
154	Intramolecular 1,3-Dipolar Cycloaddition to Ester Carbonyl of Azomethinylides Prepared from Aldimines and Difluorocarbene. Russian Journal of Organic Chemistry, 2004, 40, 199-205.	0.8	20
155	1,3-dipolar cycloaddition of fluorinated azomethine ylides at the C=N bond. Russian Journal of Organic Chemistry, 2004, 40, 1493-1499.	0.8	7
156	Cascade Transformations of (2,2-Diaryl-3,3-dichloroaziridin-1-yl)acetates ChemInform, 2004, 35, no.	0.0	2
157	A Facile Carbene Route to 2-Fluoro-2-pyrrolines via Fluorinated Azomethine Ylides ChemInform, 2004, 35, no.	0.0	0
158	Reactions of 2H-Azirines with Carbenoids from Diazo Esters: Transformations of Novel Azirinium Ylides ChemInform, 2004, 35, no.	0.0	0
159	Reactions of 2H-azirines with carbenoids from diazo esters: transformations of novel azirinium ylides. Tetrahedron Letters, 2004, 45, 6003-6006.	1.4	37
160	Cascade Transformations of (2,2-Diaryl-3,3-dichloroaziridin-1-yl)acetates. Russian Journal of Organic Chemistry, 2003, 39, 559-573.	0.8	9
161	1,3-Dipolar Cycloaddition of Azomethine Ylides Generated from Ketimines and Difluorocarbene to Symmetrically Substituted Olefins ChemInform, 2003, 34, no.	0.0	0
162	A facile carbene route to 2-fluoro-2-pyrrolines via fluorinated azomethine ylides. Journal of Fluorine Chemistry, 2003, 123, 177-181.	1.7	22

#	Article	IF	CITATIONS
163	Unprecedented 1,3-dipolar cycloaddition of azomethine ylides to ester carbonyl. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1628-1630.	1.3	21
164	Generation and cycloadditions of azirinium difluoromethanidesâ€"strained azomethine ylides. Tetrahedron Letters, 2002, 43, 8523-8525.	1.4	23
165	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 672-682.	0.8	9
166	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1647-1654.	0.8	10
167	The first example of intramolecular cycloaddition of carbene-derived azomethine ylides in a domino reaction of difluorocarbene with Schiff bases. Tetrahedron Letters, 2001, 42, 533-535.	1.4	49
168	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 507-512.	0.8	4
169	1,3-Dipolar cycloaddition of azomethine ylides derived from imines and difluorocarbene to alkynes: a new active Pb-mediated approach to 2-fluoropyrrole derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 231-237.	1.3	47
170	Unprecedented 1,3-Dipolar Cycloaddition of Azomethine Ylides Derived from Difluorocarbene and Imines to Carbonyl Compounds. â" Synthesis of Oxazolidine Derivatives. European Journal of Organic Chemistry, 1998, 1998, 133-137.	2.4	25
171	A facile tandem carbene-ylide route to 2-fluoropyrrole derivatives. Journal of Fluorine Chemistry, 1998, 90, 117-119.	1.7	23
172	A Facile Synthesis of New Ketenimine Derivatives of α-Amino Acids. Synlett, 1997, 1997, 929-930.	1.8	10
173	A Convenient Synthetic Route to Derivatives of 1,2,3,4-Tetrahydroisoquinoline-1-carboxylic Acid. Synthesis, 1997, 1997, 677-680.	2.3	16
174	Ylides from dihalocarbenes and esters of N-benzhydrylidene amino acids: halogen-dependent reaction pathways. Mendeleev Communications, 1997, 7, 145-146.	1.6	10
175	Generation and 1,3-dipolar cycloadditions of fluorine-containing azomethine ylides derived from difluorocarbene and imines. Tetrahedron Letters, 1997, 38, 4187-4190.	1.4	20
176	Azomethine imines in the reactions of dichlorocarbene with mono- and 1,2-disubstituted hydrazines. Russian Chemical Bulletin, 1996, 45, 1419-1422.	1.5	2
177	N-tert-Butyl-N-(2,2-dichlorovinyl)carbamoyl Chloride: A Novel Building Block for the Synthesis of Nitrogen Heterocycles. Synthesis, 1994, 1994, 782-784.	2.3	7
178	Reactions of dichlorocarbene with N-(2,2-diphenylvinylidene)-anilines. 1,3-Dipolar derivatives of ketenimine-ylides. Chemistry of Heterocyclic Compounds, 1987, 23, 1070-1076.	1.2	3
179	An isoxazole strategy for the synthesis of 4-oxo-1,4-dihydropyridine-3-carboxylates. Beilstein Journal of Organic Chemistry, 0, 18, 738-745.	2.2	4
180	Reaction of \hat{l} ±-Diazopyrroles with Enamines: Synthesis of Pyrrolo[2,1- <i>c</i>][1,2,4]triazines and \hat{l} ±-(1,2,5-Triazapenta-1,3-dienyl)pyrroles. Journal of Organic Chemistry, 0, , .	3.2	4