
## Paul B Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5104884/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Mutation in the <i>TRPC6</i> Cation Channel Causes Familial Focal Segmental Glomerulosclerosis.<br>Science, 2005, 308, 1801-1804.                                                                                           | 12.6 | 967       |
| 2  | MicroRNA-Mediated In Vitro and In Vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes. Circulation Research, 2012, 110, 1465-1473.                                                                             | 4.5  | 698       |
| 3  | Exercise Stimulates Pgc-1α Transcription in Skeletal Muscle through Activation of the p38 MAPK<br>Pathway. Journal of Biological Chemistry, 2005, 280, 19587-19593.                                                           | 3.4  | 575       |
| 4  | STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nature Cell Biology, 2008, 10, 688-697.                                                          | 10.3 | 329       |
| 5  | MicroRNA Induced Cardiac Reprogramming In Vivo. Circulation Research, 2015, 116, 418-424.                                                                                                                                     | 4.5  | 210       |
| 6  | beta-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac<br>myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103,<br>16284-16289. | 7.1  | 208       |
| 7  | TRPC1 Channels Are Critical for Hypertrophic Signaling in the Heart. Circulation Research, 2009, 105, 1023-1030.                                                                                                              | 4.5  | 202       |
| 8  | Exercise Can Prevent and Reverse the Severity of Hypertrophic Cardiomyopathy. Circulation Research, 2006, 98, 540-548.                                                                                                        | 4.5  | 168       |
| 9  | Comparison of impedance cardiography with invasive hemodynamic measurements in patients with<br>heart failure secondary to ischemic or nonischemic cardiomyopathy. American Journal of Cardiology,<br>2002, 89, 993-995.      | 1.6  | 127       |
| 10 | TRPC6 Enhances Angiotensin II-induced Albuminuria. Journal of the American Society of Nephrology:<br>JASN, 2011, 22, 526-535.                                                                                                 | 6.1  | 122       |
| 11 | Fibroblast Growth Factor Homologous Factor 13 Regulates Na <sup>+</sup> Channels and Conduction Velocity in Murine Hearts. Circulation Research, 2011, 109, 775-782.                                                          | 4.5  | 104       |
| 12 | Induction Therapy with Basiliximab Allows Delayed Initiation of Cyclosporine and Preserves Renal<br>Function After Cardiac Transplantation. Journal of Heart and Lung Transplantation, 2005, 24, 1327-1331.                   | 0.6  | 97        |
| 13 | Mice Lacking Homer 1 Exhibit a Skeletal Myopathy Characterized by Abnormal Transient Receptor<br>Potential Channel Activity. Molecular and Cellular Biology, 2008, 28, 2637-2647.                                             | 2.3  | 92        |
| 14 | TRPC3 channels confer cellular memory of recent neuromuscular activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9387-9392.                                                | 7.1  | 91        |
| 15 | Hypoxia reprograms calcium signaling and regulates myoglobin expression. American Journal of<br>Physiology - Cell Physiology, 2009, 296, C393-C402.                                                                           | 4.6  | 83        |
| 16 | STIM1-Ca <sup>2+</sup> Signaling Is Required for the Hypertrophic Growth of Skeletal Muscle in Mice.<br>Molecular and Cellular Biology, 2012, 32, 3009-3017.                                                                  | 2.3  | 76        |
| 17 | Rehabilitation Therapy in Older Acute Heart Failure Patients (REHAB-HF) trial: Design and rationale.<br>American Heart Journal, 2017, 185, 130-139.                                                                           | 2.7  | 71        |
| 18 | Homer modulates NFAT-dependent signaling during muscle differentiation. Developmental Biology, 2005, 287, 213-224.                                                                                                            | 2.0  | 63        |

PAUL B ROSENBERG

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of store-operated calcium influx in skeletal muscle signaling. Cell Calcium, 2011, 49, 341-349.                                                                                                                                           | 2.4 | 60        |
| 20 | Gq signaling causes glomerular injury by activating TRPC6. Journal of Clinical Investigation, 2015, 125, 1913-1926.                                                                                                                                | 8.2 | 59        |
| 21 | STIM1 enhances SR Ca <sup>2+</sup> content through binding phospholamban in rat ventricular<br>myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,<br>E4792-801.                                 | 7.1 | 55        |
| 22 | Pdx-1 Activates Islet α- and β-Cell Proliferation via a Mechanism Regulated by Transient Receptor<br>Potential Cation Channels 3 and 6 and Extracellular Signal-Regulated Kinases 1 and 2. Molecular and<br>Cellular Biology, 2013, 33, 4017-4029. | 2.3 | 51        |
| 23 | Temperature-activated ion channels in neural crest cells confer maternal fever–associated birth defects. Science Signaling, 2017, 10, .                                                                                                            | 3.6 | 51        |
| 24 | Ryanodine Receptors in Muscarinic Receptor-mediated Bronchoconstriction. Journal of Biological Chemistry, 2005, 280, 26287-26294.                                                                                                                  | 3.4 | 49        |
| 25 | STIM1–Ca <sup>2+</sup> signaling modulates automaticity of the mouse sinoatrial node. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5618-27.                                                        | 7.1 | 47        |
| 26 | Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Current Opinion in Cardiology, 2000, 15, 151-155.                                                                                                                | 1.8 | 45        |
| 27 | Ten-Year Experience With Extended Criteria Cardiac Transplantation. Circulation: Heart Failure, 2013, 6, 1230-1238.                                                                                                                                | 3.9 | 39        |
| 28 | β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility.<br>Skeletal Muscle, 2018, 8, 39.                                                                                                             | 4.2 | 37        |
| 29 | Rehabilitation Intervention in Older Patients With Acute HeartÂFailure WithÂPreserved Versus Reduced<br>EjectionÂFraction. JACC: Heart Failure, 2021, 9, 747-757.                                                                                  | 4.1 | 32        |
| 30 | Mitochondrial dysfunction and heart disease. Mitochondrion, 2004, 4, 621-628.                                                                                                                                                                      | 3.4 | 24        |
| 31 | Mechanosensitive Channels in Striated Muscle and the Cardiovascular System: Not Quite a Stretch Anymore. Journal of Cardiovascular Pharmacology, 2009, 54, 116-122.                                                                                | 1.9 | 24        |
| 32 | Dynamic regulation of sarcoplasmic reticulum Ca <sup>2+</sup> stores by stromal interaction molecule 1 and sarcolipin during muscle differentiation. Developmental Dynamics, 2012, 241, 639-647.                                                   | 1.8 | 24        |
| 33 | Canonical transient receptor potential 3 channels activate NFâ€îºB to mediate allergic airway disease via<br>PKCâ€Î±/lκBâ€Î± and calcineurin/lκBâ€Î² pathways. FASEB Journal, 2016, 30, 214-229.                                                   | 0.5 | 24        |
| 34 | Strategies for supporting intervention fidelity in the rehabilitation therapy in older acute heart failure patients (REHAB-HF) trial. Contemporary Clinical Trials, 2018, 64, 118-127.                                                             | 1.8 | 24        |
| 35 | Gq-Dependent Signaling Upregulates COX2 in Glomerular Podocytes. Journal of the American Society of Nephrology: JASN, 2008, 19, 2108-2118.                                                                                                         | 6.1 | 22        |
| 36 | SOCE and STIM1 signaling in the heart: Timing and location matter. Cell Calcium, 2019, 77, 20-28.                                                                                                                                                  | 2.4 | 21        |

PAUL B ROSENBERG

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Control of Voltage-gated Potassium Channel Kv2.2 Expression by Pyruvate-Isocitrate Cycling Regulates<br>Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2013, 288, 23128-23140.                | 3.4 | 19        |
| 38 | The β-arrestin-biased β-adrenergic receptor blocker carvedilol enhances skeletal muscle contractility.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12435-12443.    | 7.1 | 19        |
| 39 | Calcium flux and endothelial dysfunction during acute lung injury: a STIMulating target for therapy.<br>Journal of Clinical Investigation, 2013, 123, 1015-1018.                                                      | 8.2 | 19        |
| 40 | Comparison of 2-Year Outcomes of Extended Criteria Cardiac Transplantation Versus Destination Left<br>Ventricular Assist Device Therapy Using Continuous Flow. American Journal of Cardiology, 2015, 116,<br>573-579. | 1.6 | 17        |
| 41 | Tamoxifen and tamoxifen ethyl bromide induce apoptosis in acutely damaged mammary epithelial cells<br>through modulation of AKT activity. Oncogene, 2004, 23, 3851-3862.                                              | 5.9 | 15        |
| 42 | The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and<br>Vascular Biology, 2016, 36, 984-993.                                                                          | 2.4 | 15        |
| 43 | Crizotinib inhibits hyperpolarization-activated cyclic nucleotide-gated channel 4 activity.<br>Cardio-Oncology, 2017, 3, .                                                                                            | 1.7 | 14        |
| 44 | Desmin interacts with STIM1 and coordinates Ca2+ signaling in skeletal muscle. JCI Insight, 2021, 6, .                                                                                                                | 5.0 | 12        |
| 45 | Cytoskeletal Regulation of TRPC Channels in the Cardiorenal System. Current Hypertension Reports, 2012, 14, 492-497.                                                                                                  | 3.5 | 11        |
| 46 | Calcium entry in skeletal muscle. Journal of Physiology, 2009, 587, 3149-3151.                                                                                                                                        | 2.9 | 10        |
| 47 | Trends and outcomes of cardiac transplantation from donors dying of drug intoxication. American<br>Heart Journal, 2018, 199, 92-96.                                                                                   | 2.7 | 10        |
| 48 | Socking It to Cardiac Hypertrophy. Circulation, 2011, 124, 766-768.                                                                                                                                                   | 1.6 | 8         |
| 49 | STIM1-Ca2+ signaling in coronary sinus cardiomyocytes contributes to interatrial conduction. Cell Calcium, 2020, 87, 102163.                                                                                          | 2.4 | 7         |
| 50 | SOCE in the cardiomyocyte: the secret is in the chambers. Pflugers Archiv European Journal of Physiology, 2021, 473, 417-434.                                                                                         | 2.8 | 7         |
| 51 | Disruption of STIM1-mediated Ca2+ sensing and energy metabolism in adult skeletal muscle<br>compromises exercise tolerance, proteostasis, and lean mass. Molecular Metabolism, 2022, 57, 101429.                      | 6.5 | 6         |
| 52 | Relationship of physical function with quality of life in older patients with acute heart failure.<br>Journal of the American Geriatrics Society, 2021, 69, 1836-1845.                                                | 2.6 | 5         |
| 53 | VDAC2 as a novel target for heart failure: Ca2+ at the sarcomere, mitochondria and SR. Cell Calcium, 2022, 104, 102586.                                                                                               | 2.4 | 3         |
| 54 | Topical Anesthesia With EMLA Reduces Pain During Endomyocardial Biopsy: a Randomized Trial. Journal of Heart and Lung Transplantation, 2006, 25, 1164-1166.                                                           | 0.6 | 2         |

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Antiâ€ŧumour activity and store operated calcium entry: new roles in immunology. EMBO Molecular<br>Medicine, 2013, 5, 1297-1299.                    | 6.9 | 2         |
| 56 | Older Patients With Acute Decompensated Heart Failure Who Live Alone: An Analysis From the<br>REHAB-HF Trial. Journal of Cardiac Failure, 2021, , . | 1.7 | 2         |
| 57 | TRP Channels in Cardiovascular Disease. , 2015, , 365-383.                                                                                          |     | 1         |
| 58 | Skeletal Muscle. , 2012, , 435-447.                                                                                                                 |     | 0         |
| 59 | Cardiomyocyte specific overexpression of C3orf58 activates ER stress leading to impaired cardiac function. FASEB Journal, 2013, 27, 929.7.          | 0.5 | 0         |
|    |                                                                                                                                                     |     |           |