Masahiro Ikoma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5104605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ariel planetary interiors White Paper. Experimental Astronomy, 2022, 53, 323-356.	3.7	12
2	A 38 Million Year Old Neptune-sized Planet in the Kepler Field. Astronomical Journal, 2022, 163, 121.	4.7	18
3	Five Key Exoplanet Questions Answered via the Analysis of 25 Hot-Jupiter Atmospheres in Eclipse. Astrophysical Journal, Supplement Series, 2022, 260, 3.	7.7	33
4	TOI-1696: A Nearby M4 Dwarf with a 3 R _⊕ Planet in the Neptunian Desert. Astronomical Journal, 2022, 163, 298.	4.7	6
5	Comparison of Planetary Hα-emission Models: A New Correlation with Accretion Luminosity. Astrophysical Journal Letters, 2021, 917, L30.	8.3	25
6	Two Bright M Dwarfs Hosting Ultra-Short-Period Super-Earths with Earth-like Compositions*. Astronomical Journal, 2021, 162, 161.	4.7	20
7	Keck/OSIRIS PaÎ ² High-contrast Imaging and Updated Constraints on PDS 70b. Astronomical Journal, 2021, 162, 214.	4.7	9
8	Hydrodynamic Model of Hα Emission from Accretion Shocks of a Proto-giant Planet and Circumplanetary Disk. Astrophysical Journal, 2021, 921, 10.	4.5	8
9	Hydrodynamic escape of mineral atmosphere from hot rocky exoplanet. I. Model description. Monthly Notices of the Royal Astronomical Society, 2021, 502, 750-771.	4.4	23
10	TOI-2109: An Ultrahot Gas Giant on a 16 hr Orbit. Astronomical Journal, 2021, 162, 256.	4.7	21
11	Discovery of a hot, transiting, Earth-sized planet and a second temperate, non-transiting planet around the M4 dwarf GJ 3473 (TOI-488). Astronomy and Astrophysics, 2020, 642, A236.	5.1	27
12	Formation of aqua planets with water of nebular origin: effects of water enrichment on the structure and mass of captured atmospheres of terrestrial planets. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3755-3766.	4.4	12
13	Accretion Properties of PDS 70b with MUSE*. Astronomical Journal, 2020, 159, 222.	4.7	42
14	Runaway climate cooling of ocean planets in the habitable zone: a consequence of seafloor weathering enhanced by melting of high-pressure ice. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1580-1596.	4.4	13
15	Capture of solids by growing proto-gas giants: effects of gap formation and supply limited growth. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4510-4524.	4.4	32
16	Theoretical Transmission Spectra of Exoplanet Atmospheres with Hydrocarbon Haze: Effect of Creation, Growth, and Settling of Haze Particles. II. Dependence on UV Irradiation Intensity, Metallicity, C/O Ratio, Eddy Diffusion Coefficient, and Temperature. Astrophysical Journal, 2019, 877, 109	4.5	54
17	Detectable Molecular Features above Hydrocarbon Haze via Transmission Spectroscopy with JWST: Case Studies of GJ 1214b-, GJ 436b-, HD 97658b-, and Kepler-51b-like Planets. Astrophysical Journal Letters, 2019, 876, L5.	8.3	37
18	Constraining Planetary Gas Accretion Rate from Hα Line Width and Intensity: Case of PDS 70 b and c. Astrophysical Journal Letters, 2019, 885, L29.	8.3	29

Masahiro Ikoma

#	Article	IF	CITATIONS
19	First measurements of Jupiter's zonal winds with visible imaging spectroscopy. Icarus, 2019, 319, 795-811.	2.5	10
20	Theoretical Model of Hydrogen Line Emission from Accreting Gas Giants. Astrophysical Journal, 2018, 866, 84.	4.5	42
21	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	3.7	249
22	The Origin of the Heavy-element Content Trend in Giant Planets via Core Accretion. Astrophysical Journal, 2018, 865, 32.	4.5	18
23	Theoretical Transmission Spectra of Exoplanet Atmospheres with Hydrocarbon Haze: Effect of Creation, Growth, and Settling of Haze Particles. I. Model Description and First Results. Astrophysical Journal, 2018, 853, 7.	4.5	69
24	Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans. Space Science Reviews, 2018, 214, 1.	8.1	43
25	Stellar imaging coronagraph and exoplanet coronal spectrometer: two additional instruments for exoplanet exploration onboard the WSO-UV 1.7-m orbital telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4, 1.	1.8	6
26	Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion. Earth and Planetary Science Letters, 2017, 470, 87-95.	4.4	31
27	Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres. Astronomical Journal, 2017, 153, 260.	4.7	20
28	DEMONSTRATING HIGH-PRECISION, MULTIBAND TRANSIT PHOTOMETRY WITH MUSCAT: A CASE FOR HAT-P-14B. Astrophysical Journal, 2016, 819, 27.	4.5	39
29	Formation and Evolution of Protoatmospheres. Space Science Reviews, 2016, 205, 153-211.	8.1	68
30	Critical core mass for enriched envelopes: the role of H ₂ O condensation. Astronomy and Astrophysics, 2015, 576, A114.	5.1	62
31	THEORETICAL EMISSION SPECTRA OF ATMOSPHERES OF HOT ROCKY SUPER-EARTHS. Astrophysical Journal, 2015, 801, 144.	4.5	99
32	MULTI-BAND, MULTI-EPOCH OBSERVATIONS OF THE TRANSITING WARM JUPITER WASP-80b. Astrophysical Journal, 2014, 790, 108.	4.5	44
33	Initiation of leaking Earth: An ultimate trigger of the Cambrian explosion. Gondwana Research, 2014, 25, 910-944.	6.0	49
34	Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. Astronomy and Astrophysics, 2014, 562, A80.	5.1	23
35	MULTI-COLOR TRANSIT PHOTOMETRY OF GJ 1214b THROUGH <i>BJHK</i> sub>sBANDS AND A LONG-TERM MONITORING OF THE STELLAR VARIABILITY OF GJ 1214. Astrophysical Journal, 2013, 773, 144.	4.5	59
36	The naked planet Earth: Most essential pre-requisite for the origin and evolution of life. Geoscience Frontiers, 2013, 4, 141-165.	8.4	122

Masahiro Ikoma

#	Article	IF	CITATIONS
37	OPTICAL-TO-NEAR-INFRARED SIMULTANEOUS OBSERVATIONS FOR THE HOT URANUS GJ3470b: A HINT OF A CLOUD-FREE ATMOSPHERE. Astrophysical Journal, 2013, 770, 95.	4.5	55
38	STARSPOTS-TRANSIT DEPTH RELATION OF THE EVAPORATING PLANET CANDIDATE KIC 12557548b. Astrophysical Journal Letters, 2013, 776, L6.	8.3	37
39	IRSF SIRIUS <i>JHK</i> s Simultaneous Transit Photometry of GJ 1214b. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	52
40	IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS. Astrophysical Journal, 2012, 753, 66.	4.5	171
41	PLANET ENGULFMENT BY â^¼1.5-3 <i>M</i> _{â~‰} RED GIANTS. Astrophysical Journal, 2011, 737, 66.	4.5	122
42	SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS. Astrophysical Journal, 2011, 729, 32.	4.5	115
43	Gas giant formation with small cores triggered by envelope pollution by icy planetesimals. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1419-1429.	4.4	109
44	CRITICAL CORE MASSES FOR GAS GIANT FORMATION WITH GRAIN-FREE ENVELOPES. Astrophysical Journal, 2010, 714, 1343-1346.	4.5	68
45	Origin of the ocean on the Earth: Early evolution of water D/H in a hydrogen-rich atmosphere. Icarus, 2008, 194, 42-52.	2.5	101
46	Planetary Companions around Three Intermediate-Mass G and K Giants: 18 Delphini, ξ Aquilae, and HD 81688. Publication of the Astronomical Society of Japan, 2008, 60, 539-550.	2.5	105
47	A Planetary Companion to the Hyades Giant ε Tauri. Astrophysical Journal, 2007, 661, 527-531.	4.5	139
48	A Systematic Study of the Final Masses of Gas Giant Planets. Astrophysical Journal, 2007, 667, 557-570.	4.5	78
49	On the Origin of HD 149026b. Astrophysical Journal, 2006, 650, 1150-1159.	4.5	86
50	Constraints on the Mass of a Habitable Planet with Water of Nebular Origin. Astrophysical Journal, 2006, 648, 696-706.	4.5	180
51	Formation of gas giant planets: core accretion models with fragmentation and planetary envelope. Icarus, 2003, 166, 46-62.	2.5	153
52	Enhanced collisional growth of a protoplanet that has an atmosphere. Astronomy and Astrophysics, 2003, 410, 711-723.	5.1	119
53	Formation of Giant Planets in Dense Nebulae: Critical Core Mass Revisited. Astrophysical Journal, 2001, 553, 999-1005.	4.5	65
54	Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity. Astrophysical Journal, 2000, 537, 1013-1025.	4.5	383

#	Article	IF	CITATIONS
55	Formation of a proto-Jovian envelope for various planetary accretion rates. Journal of Physics Condensed Matter, 1998, 10, 11537-11540.	1.8	2