
Nigel J Pyne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5104081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation of highly selective sphingosine kinase 2 inhibitors SLM6031434 and HWG-35D as effective anti-fibrotic treatment options in a mouse model of tubulointerstitial fibrosis. Cellular Signalling, 2021, 79, 109881.	3.6	7
2	A new model for regulation of sphingosine kinase 1 translocation to the plasma membrane in breast cancer cells. Journal of Biological Chemistry, 2021, 296, 100674.	3.4	2
3	Dihydroceramide Desaturase Functions as an Inducer and Rectifier of Apoptosis: Effect of Retinol Derivatives, Antioxidants and Phenolic Compounds. Cell Biochemistry and Biophysics, 2021, 79, 461-475.	1.8	6
4	Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia. Nature Communications, 2021, 12, 7268.	12.8	24
5	Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases. Cellular Signalling, 2020, 76, 109806.	3.6	10
6	A Novel Selective Sphingosine Kinase 2 Inhibitor, HWG-35D, Ameliorates the Severity of Imiquimod-Induced Psoriasis Model by Blocking Th17 Differentiation of Naà ve CD4 T Lymphocytes. International Journal of Molecular Sciences, 2020, 21, 8371.	4.1	12
7	Recent advances in the role of sphingosine 1â€phosphate in cancer. FEBS Letters, 2020, 594, 3583-3601.	2.8	35
8	The regulation of p53, p38 MAPK, JNK and XBP-1s by sphingosine kinases in human embryonic kidney cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158631.	2.4	1
9	Sphingosine Kinase 1 Regulates the Survival of Breast Cancer Stem Cells and Non-stem Breast Cancer Cells by Suppression of STAT1. Cells, 2020, 9, 886.	4.1	23
10	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
11	Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13320-13329.	7.1	54
12	Topographical Mapping of Isoform-Selectivity Determinants for J-Channel-Binding Inhibitors of Sphingosine Kinases 1 and 2. Journal of Medicinal Chemistry, 2019, 62, 3658-3676.	6.4	23
13	Ceramide and sphingosine 1-phosphate in adipose dysfunction. Progress in Lipid Research, 2019, 74, 145-159.	11.6	30
14	Short Periods of Hypoxia Upregulate Sphingosine Kinase 1 and Increase Vasodilation of Arteries to Sphingosine 1-Phosphate (S1P) via S1P ₃ . Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 63-74.	2.5	8
15	Requirement for sphingosine kinase 1 in mediating phase 1 of the hypotensive response to anandamide in the anaesthetised mouse. European Journal of Pharmacology, 2019, 842, 1-9.	3.5	9
16	Sphingosine Kinases as Druggable Targets. Handbook of Experimental Pharmacology, 2018, 259, 49-76.	1.8	12
17	Cellular Signalling – Special issue to celebrate 75th birthday of Prof. Robert J. Lefkowitz. Cellular Signalling, 2018, 41, 1.	3.6	1
18	Sphingosine 1-phosphate and cancer. Advances in Biological Regulation, 2018, 68, 97-106.	2.3	82

Nigel J Pyne

#	Article	IF	CITATIONS
19	Does the Sphingosine 1-Phosphate Receptor-1 Provide a Better or Worse Prognostic Outcome for Breast Cancer Patients?. Frontiers in Oncology, 2018, 8, 417.	2.8	0
20	Native and Polyubiquitinated Forms of Dihydroceramide Desaturase Are Differentially Linked to Human Embryonic Kidney Cell Survival. Molecular and Cellular Biology, 2018, 38, .	2.3	16
21	The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget, 2018, 9, 29453-29467.	1.8	27
22	Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Trends in Pharmacological Sciences, 2017, 38, 581-591.	8.7	34
23	Sphingosine Kinase 1: A Potential Therapeutic Target in Pulmonary Arterial Hypertension?. Trends in Molecular Medicine, 2017, 23, 786-798.	6.7	23
24	Effect of sphingosine kinase modulators on interleukinâ€lβ release, sphingosine 1â€phosphate receptor 1 expression and experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2017, 174, 210-222.	5.4	8
25	Sphingosine 1-Phosphate Receptor 1 Signaling in Mammalian Cells. Molecules, 2017, 22, 344.	3.8	64
26	Sphingosine kinase 2 and multiple myeloma. Oncotarget, 2017, 8, 43596-43597.	1.8	3
27	A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. Progress in Lipid Research, 2016, 61, 19-29.	11.6	0
28	Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cellular Signalling, 2016, 28, 946-955.	3.6	37
29	Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia, 2016, 30, 2142-2151.	7.2	34
30	Sphingosine Kinases: Emerging Structure–Function Insights. Trends in Biochemical Sciences, 2016, 41, 395-409.	7.5	62
31	Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Progress in Lipid Research, 2016, 62, 93-106.	11.6	153
32	Effect of ether glycerol lipids on interleukin-1Î ² release and experimental autoimmune encephalomyelitis. Chemistry and Physics of Lipids, 2016, 194, 2-11.	3.2	4
33	Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Advances in Biological Regulation, 2016, 60, 151-159.	2.3	119
34	Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget, 2016, 7, 16663-16675.	1.8	66
35	The life and work of Dr. Robert Bittman (1942–2014). Biological Chemistry, 2015, 396, 827-830.	2.5	0
36	Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Archives of Toxicology, 2014, 88, 2213-2232.	4.2	16

#	Article	IF	CITATIONS
37	Sphingosine kinase 1 enables communication between melanoma cells and fibroblasts that provides a new link to metastasis. Oncogene, 2014, 33, 3361-3363.	5.9	9
38	The role of sphingosine 1-phosphate in inflammation and cancer. Advances in Biological Regulation, 2014, 54, 121-129.	2.3	44
39	Crystal Structure of Sphingosine Kinase 1 with PF-543. ACS Medicinal Chemistry Letters, 2014, 5, 1329-1333.	2.8	90
40	Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: The role of sphingosine 1-phosphate receptor-4. Cellular Signalling, 2014, 26, 1040-1047.	3.6	23
41	Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget, 2014, 5, 7886-7901.	1.8	36
42	Identification of novel functional and spatial associations between sphingosine kinase 1, sphingosine 1â€phosphate receptors and other signaling proteins that affect prognostic outcome in estrogen receptorâ€positive breast cancer. International Journal of Cancer, 2013, 132, 605-616.	5.1	40
43	Sphingosine 1-Phosphate Is a Missing Link between Chronic Inflammation and Colon Cancer. Cancer Cell, 2013, 23, 5-7.	16.8	29
44	New Perspectives on the Role of Sphingosine 1-Phosphate in Cancer. Handbook of Experimental Pharmacology, 2013, , 55-71.	1.8	20
45	Structure–Activity Relationships and Molecular Modeling of Sphingosine Kinase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 9310-9327.	6.4	43
46	The sphingosine kinase inhibitor 2â€(<i>p</i> â€hyroxyanilino)â€4â€(<i>p</i> â€chlorophenyl)thiazole reduces androgen receptor expression via an oxidative stressâ€dependent mechanism. British Journal of Pharmacology, 2013, 168, 1497-1505.	5.4	16
47	Novel sphingosine-containing analogues selectively inhibit sphingosine kinase (SK) isozymes, induce SK1 proteasomal degradation and reduce DNA synthesis in human pulmonary arterial smooth muscle cells. MedChemComm, 2013, 4, 1394.	3.4	53
48	The p.Arg86Gln change in GARP2 (glutamic acid-rich protein-2) is a common West African-related polymorphism. Gene, 2013, 515, 155-158.	2.2	11
49	Synthesis of selective inhibitors of sphingosine kinase 1. Chemical Communications, 2013, 49, 2136.	4.1	52
50	The roles of sphingosine kinases 1 and 2 in regulating the Warburg effect in prostate cancer cells. Cellular Signalling, 2013, 25, 1011-1017.	3.6	46
51	Synthesis of (S)-FTY720 vinylphosphonate analogues and evaluation of their potential as sphingosine kinase 1 inhibitors and activators. Bioorganic and Medicinal Chemistry, 2013, 21, 2503-2510.	3.0	23
52	Role of sphingosine 1-phosphate and lysophosphatidic acid in fibrosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 228-238.	2.4	54
53	The Roles of Sphingosine Kinase 1 and 2 in Regulating the Metabolome and Survival of Prostate Cancer Cells. Biomolecules, 2013, 3, 316-333.	4.0	13
54	Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death and Disease, 2013, 4, e927-e927.	6.3	74

#	Article	IF	CITATIONS
55	Expression of sphingosine 1-phosphate receptor 4 and sphingosine kinase 1 is associated with outcome in oestrogen receptor-negative breast cancer. British Journal of Cancer, 2012, 106, 1453-1459.	6.4	59
56	Sphingosine 1-phosphate receptors and sphingosine kinase 1: novel biomarkers for clinical prognosis in breast, prostate, and hematological cancers. Frontiers in Oncology, 2012, 2, 168.	2.8	37
57	Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. British Journal of Pharmacology, 2012, 166, 1605-1616.	5.4	54
58	Targeting sphingosine kinase 1 in cancer. Advances in Biological Regulation, 2012, 52, 31-38.	2.3	37
59	Inhibition kinetics and regulation of sphingosine kinase 1 expression in prostate cancer cells: Functional differences between sphingosine kinase 1a and 1b. International Journal of Biochemistry and Cell Biology, 2012, 44, 1457-1464.	2.8	36
60	Sphingosine 1-phosphate signalling in cancer. Biochemical Society Transactions, 2012, 40, 94-100.	3.4	109
61	Translational aspects of sphingosine 1-phosphate biology. Trends in Molecular Medicine, 2011, 17, 463-472.	6.7	66
62	Receptor tyrosine kinase–G-protein-coupled receptor signalling platforms: out of the shadow?. Trends in Pharmacological Sciences, 2011, 32, 443-450.	8.7	105
63	Selectivity and Specificity of Sphingosine 1-Phosphate Receptor Ligands: "Off-Targets―or Complex Pharmacology?. Frontiers in Pharmacology, 2011, 2, 26.	3.5	32
64	(R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: Effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cellular Signalling, 2011, 23, 1590-1595.	3.6	95
65	Sphingosine Kinase Inhibitors and Cancer: Seeking the Golden Sword of Hercules. Cancer Research, 2011, 71, 6576-6582.	0.9	77
66	FTY720 Analogues as Sphingosine Kinase 1 Inhibitors. Journal of Biological Chemistry, 2011, 286, 18633-18640.	3.4	107
67	Intracellular S1P Generation Is Essential for S1P-Induced Motility of Human Lung Endothelial Cells: Role of Sphingosine Kinase 1 and S1P Lyase. PLoS ONE, 2011, 6, e16571.	2.5	49
68	Targeting β-cell cyclic 3′5′adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. Journal of Pharmacy and Pharmacology, 2010, 56, 1477-1492.	2.4	29
69	Cyclic AMP Signaling in Pancreatic Islets. Advances in Experimental Medicine and Biology, 2010, 654, 281-304.	1.6	89
70	FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cellular Signalling, 2010, 22, 1536-1542.	3.6	169
71	(S)-FTY720-Vinylphosphonate, an analogue of the immunosuppressive agent FTY720, is a pan-antagonist of sphingosine 1-phosphate GPCR signaling and inhibits autotaxin activity. Cellular Signalling, 2010, 22, 1543-1553.	3.6	50
72	The sphingosine kinase inhibitor <i>N</i> , <i>N</i> â€dimethylsphingosine inhibits neointimal hyperplasia. British Journal of Pharmacology, 2010, 159, 543-553.	5.4	12

#	Article	IF	CITATIONS
73	Interaction between anandamide and sphingosineâ€1â€phosphate in mediating vasorelaxation in rat coronary artery. British Journal of Pharmacology, 2010, 161, 176-192.	5.4	30
74	Sphingosine Kinase 1 Induces Tolerance to Human Epidermal Growth Factor Receptor 2 and Prevents Formation of a Migratory Phenotype in Response to Sphingosine 1-Phosphate in Estrogen Receptor-Positive Breast Cancer Cells. Molecular and Cellular Biology, 2010, 30, 3827-3841.	2.3	94
75	Sphingosine 1-Phosphate Receptor 4 Uses HER2 (ERBB2) to Regulate Extracellular Signal Regulated Kinase-1/2 in MDA-MB-453 Breast Cancer Cells. Journal of Biological Chemistry, 2010, 285, 35957-35966.	3.4	72
76	Sphingosine 1-phosphate and cancer. Nature Reviews Cancer, 2010, 10, 489-503.	28.4	765
77	High Expression of Sphingosine 1-Phosphate Receptors, S1P1 and S1P3, Sphingosine Kinase 1, and Extracellular Signal-Regulated Kinase-1/2 Is Associated with Development of Tamoxifen Resistance in Estrogen Receptor-Positive Breast Cancer Patients. American Journal of Pathology, 2010, 177, 2205-2215.	3.8	156
78	The Sphingosine Kinase 1 Inhibitor 2-(p-Hydroxyanilino)-4-(p-chlorophenyl)thiazole Induces Proteasomal Degradation of Sphingosine Kinase 1 in Mammalian Cells*. Journal of Biological Chemistry, 2010, 285, 38841-38852.	3.4	106
79	Sphingosine 1-Phosphate Regulation of Extracellular Signal-Regulated Kinase-1/2 in Embryonic Stem Cells. Stem Cells and Development, 2009, 18, 1319-1330.	2.1	41
80	Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cellular Signalling, 2009, 21, 14-21.	3.6	124
81	The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: Possible role in regulating cell division. Cellular Signalling, 2009, 21, 675-684.	3.6	30
82	The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagonâ€like peptideâ€1 release. British Journal of Pharmacology, 2009, 157, 633-644.	5.4	50
83	New aspects of sphingosine 1-phosphate signaling in mammalian cells. Advances in Enzyme Regulation, 2009, 49, 214-221.	2.6	28
84	Targeting sphingosine-1-phosphate signalling for cardioprotection. Current Opinion in Pharmacology, 2009, 9, 194-201.	3.5	40
85	Sphingosine 1-phosphate, lysophosphatidic acid and growth factor signaling and termination. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 467-476.	2.4	34
86	Protein Kinase C-ïμ Regulates Sphingosine 1-Phosphate-mediated Migration of Human Lung Endothelial Cells through Activation of Phospholipase D2, Protein Kinase C-ζ, and Rac1. Journal of Biological Chemistry, 2008, 283, 11794-11806.	3.4	51
87	Lipid phosphate phosphatases form homo- and hetero-oligomers: catalytic competency, subcellular distribution and function. Biochemical Journal, 2008, 411, 371-377.	3.7	23
88	Receptor tyrosine kinase-G-protein coupled receptor complex signaling in mammalian cells. Advances in Enzyme Regulation, 2007, 47, 271-280.	2.6	26
89	Lipid phosphate phosphatase-1 regulates lysophosphatidic acid- and platelet-derived-growth-factor-induced cell migration. Biochemical Journal, 2006, 394, 495-500.	3.7	29
90	Integrin signalling regulates the nuclear localization and function of the lysophosphatidic acid receptor-1 (LPA1) in mammalian cells. Biochemical Journal, 2006, 398, 55-62.	3.7	32

#	Article	IF	CITATIONS
91	Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in pheochromocytoma 12 cells. Journal of Neurochemistry, 2006, 98, 1920-1929.	3.9	24
92	The effect of RGS12 on PDGFβ receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells. Cellular Signalling, 2006, 18, 971-981.	3.6	39
93	The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins and Other Lipid Mediators, 2006, 79, 278-286.	1.9	47
94	The functional PDGFβ receptor–S1P1 receptor signaling complex is involved in regulating migration of mouse embryonic fibroblasts in response to platelet derived growth factor. Prostaglandins and Other Lipid Mediators, 2006, 80, 74-80.	1.9	29
95	Cell migration activated by plateletâ€derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1â€phosphate receptorâ€1. FASEB Journal, 2006, 20, 509-511.	0.5	77
96	Regulation of Lysophosphatidic Acid-induced Epidermal Growth Factor Receptor Transactivation and Interleukin-8 Secretion in Human Bronchial Epithelial Cells by Protein Kinase CÎ′, Lyn Kinase, and Matrix Metalloproteinases. Journal of Biological Chemistry, 2006, 281, 19501-19511.	3.4	91
97	Lipid phosphate phosphatases and lipid phosphate signalling. Biochemical Society Transactions, 2005, 33, 1370.	3.4	87
98	Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. Biochemical Journal, 2005, 391, 25-32.	3.7	68
99	c-Src is involved in regulating signal transmission from PDGFβ receptor–GPCR(s) complexes in mammalian cells. Cellular Signalling, 2005, 17, 263-277.	3.6	77
100	Experimental Systems for Studying the Role of G-Protein-Coupled Receptors in Receptor Tyrosine Kinase Signal Transduction. Methods in Enzymology, 2004, 390, 451-475.	1.0	6
101	Ectopic Expression of Bovine Type 5 Phosphodiesterase Confers a Renal Phenotype in Drosophila. Journal of Biological Chemistry, 2004, 279, 8159-8168.	3.4	35
102	Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cellular Signalling, 2004, 16, 127-136.	3.6	75
103	The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Seminars in Cell and Developmental Biology, 2004, 15, 309-323.	5.0	84
104	Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia, 2003, 46, 1179-1189.	6.3	75
105	Interaction of caspase-3 with the cyclic GMP binding cyclic GMP specific phosphodiesterase (PDE5a1). FEBS Journal, 2003, 270, 962-970.	0.2	11
106	An assessment of the role of the inhibitory gamma subunit of the retinal cyclic GMP phosphodiesterase and its effect on the p42/p44 mitogen-activated protein kinase pathway in animal and cellular models of pulmonary hypertension. British Journal of Pharmacology, 2003, 138, 1313-1319.	5.4	16
107	Sphingosine 1-Phosphate and Platelet-derived Growth Factor (PDGF) Act via PDGFÎ ² Receptor-Sphingosine 1-Phosphate Receptor Complexes in Airway Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 6282-6290.	3.4	131
108	Ryanodine receptors of pancreatic βâ€cells mediate a distinct contextâ€dependent signal for insulin secretion. FASEB Journal, 2003, 17, 301-303.	0.5	60

#	Article	IF	CITATIONS
109	The Inhibitory Î ³ Subunit of the Type 6 Retinal cGMP Phosphodiesterase Functions to Link c-Src and G-protein-coupled Receptor Kinase 2 in a Signaling Unit That Regulates p42/p44 Mitogen-activated Protein Kinase by Epidermal Growth Factor. Journal of Biological Chemistry, 2003, 278, 18658-18663.	3.4	32
110	Receptor tyrosine kinase–CPCR signal complexes. Biochemical Society Transactions, 2003, 31, 1220-1225.	3.4	53
111	The Identification of the Inhibitory Î ³ -Subunits of the Type 6 Retinal Cyclic Guanosine Monophosphate Phosphodiesterase in Non-retinal Tissues: Differential Processing of mRNA Transcripts. Genomics, 2002, 79, 582-586.	2.9	18
112	Sphingosine 1-phosphate signalling and termination at lipid phosphate receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 121-131.	2.4	81
113	Streptozotocin diabetes protects against arrhythmias in rat isolated hearts: role of hypothyroidism. European Journal of Pharmacology, 2002, 435, 269-276.	3.5	36
114	Increased expression of the cGMPâ€inhibited cAMPâ€specific (PDE3) and cGMP binding cGMPâ€specific (PDE5) phosphodiesterases in models of pulmonary hypertension. British Journal of Pharmacology, 2002, 137, 1187-1194.	5.4	118
115	Nerve Growth Factor Stimulation of p42/p44 Mitogen-Activated Protein Kinase in PC12 Cells: Role of G _{i/o} , G Protein-Coupled Receptor Kinase 2, β-Arrestin I, and Endocytic Processing. Molecular Pharmacology, 2001, 60, 63-70.	2.3	87
116	Attenuation of C-protein coupled receptor activated p42/p44 mitogen activated protein kinase by lipid phosphate phosphatases 1,1a and 2. Biochemical Society Transactions, 2001, 29, A118-A118.	3.4	0
117	Assessment of agonism at C-protein coupled receptors by phosphatidic acid and lysophosphatidic acid in human embryonic kidney 293 cells. British Journal of Pharmacology, 2001, 134, 6-9.	5.4	30
118	The Î ³ subunit of the rod photoreceptor cGMP phosphodiesterase can modulate the proteolysis of two cGMP binding cGMP-specific phosphodiesterases (PDE6 and PDE5) by caspase-3. Cellular Signalling, 2001, 13, 735-741.	3.6	11
119	The Inhibitory Î ³ Subunit of the Type 6 Retinal Cyclic Guanosine Monophosphate Phosphodiesterase Is a Novel Intermediate Regulating p42/p44 Mitogen-activated Protein Kinase Signaling in Human Embryonic Kidney 293 Cells. Journal of Biological Chemistry, 2001, 276, 37802-37808.	3.4	31
120	G-protein-coupled Receptor Stimulation of the p42/p44 Mitogen-activated Protein Kinase Pathway Is Attenuated by Lipid Phosphate Phosphatases 1, 1a, and 2 in Human Embryonic Kidney 293 Cells. Journal of Biological Chemistry, 2001, 276, 13452-13460.	3.4	88
121	Short-Term Local Delivery of an Inhibitor of Ras Farnesyltransferase Prevents Neointima Formation In Vivo After Porcine Coronary Balloon Angioplasty. Circulation, 2001, 104, 1538-1543.	1.6	43
122	Tethering of the Platelet-derived Growth Factor Î ² Receptor to G-protein-coupled Receptors. Journal of Biological Chemistry, 2001, 276, 28578-28585.	3.4	147
123	Sphingosine 1-phosphate signalling in mammalian cells. Biochemical Journal, 2000, 349, 385.	3.7	464
124	Sphingosine 1-phosphate signalling in mammalian cells. Biochemical Journal, 2000, 349, 385-402.	3.7	637
125	Effect of type-selective inhibitors on cyclic nucleotide phosphodiesterase activity and insulin secretion in the clonal insulin secreting cell line BRIN-BD11. British Journal of Pharmacology, 2000, 129, 1228-1234.	5.4	33
126	The role of the cyclic GMP-inhibited cyclic AMP-specific phosphodiesterase (PDE3) in regulating clonal BRIN-BD11 insulin secreting cell survival. Cellular Signalling, 2000, 12, 541-548.	3.6	14

#	Article	IF	CITATIONS
127	Ceramide-dependent regulation of p42/p44 mitogen-activated protein kinase and c-Jun N-terminal-directed protein kinase in cultured airway smooth muscle cells. Cellular Signalling, 2000, 12, 737-743.	3.6	23
128	Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. , 2000, 88, 115-131.		169
129	The cAMP-specific Phosphodiesterase PDE4A5 Is Cleaved Downstream of Its SH3 Interaction Domain by Caspase-3. Journal of Biological Chemistry, 2000, 275, 28063-28074.	3.4	45
130	The Platelet-Derived Growth Factor Receptor Stimulation of p42/p44 Mitogen-Activated Protein Kinase in Airway Smooth Muscle Involves a G-Protein-Mediated Tyrosine Phosphorylation of Gab1. Molecular Pharmacology, 2000, 58, 413-420.	2.3	43
131	Assessment of the Extracellular and Intracellular Actions of Sphingosine 1-phosphate by Using the p42/p44 Mitogen-Activated Protein Kinase Cascade as a Model. Cellular Signalling, 1999, 11, 349-354.	3.6	32
132	Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Biochemical Journal, 1999, 338, 643.	3.7	42
133	Extracellular actions of sphingosine I-phosphate through endothelial differentiation gene products in mammalian cells: role in regulating proliferation and apoptosis. Biochemical Society Transactions, 1999, 27, 404-409.	3.4	14
134	SPHINGOSINE 1-PHOSPHATE SIGNALLING. Biochemical Society Transactions, 1999, 27, A79-A79.	3.4	1
135	Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive C-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochemical Journal, 1999, 337, 171.	3.7	61
136	Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive C-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochemical Journal, 1999, 337, 171-177.	3.7	127
137	Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Biochemical Journal, 1999, 338, 643-649.	3.7	83
138	PDGF-Stimulated Cyclic AMP Formation in Airway Smooth Muscle. Cellular Signalling, 1998, 10, 363-369.	3.6	12
139	The Î ³ -subunit of the rod photoreceptor cGMP-binding cGMP-specific PDE is expressed in mouse lung. Cell Biochemistry and Biophysics, 1998, 29, 133-144.	1.8	16
140	Sphingolipids as differential regulators of cellular signalling processes. Biochemical Society Transactions, 1997, 25, 549-556.	3.4	30
141	The Regulation of the cGMP-binding cGMP Phosphodiesterase by Proteins That Are Immunologically Related to γ Subunit of the Photoreceptor cGMP Phosphodiesterase. Journal of Biological Chemistry, 1997, 272, 18397-18403.	3.4	43
142	40 Sphingosine 1-phosphate activation of MAP kinase — involvement of PI 3-kinase and protein kinase C. Biochemical Society Transactions, 1997, 25, S585-S585.	3.4	4
143	The effect of selective phosphodiesterase inhibitors on plasma insulin concentrations and insulin secretion in vitro in the rat. European Journal of Pharmacology, 1997, 324, 227-232.	3.5	23
144	Platelet-derived Growth Factor Activates a Mammalian Ste20 Coupled Mitogen-activated Protein Kinase in Airway Smooth Muscle. Cellular Signalling, 1997, 9, 311-317.	3.6	18

#	Article	IF	CITATIONS
145	Characterization of an extract from the leaves ofCissampelos sympodialis Eichl. on the spontaneous tone of isolated trachea. Phytotherapy Research, 1997, 11, 496-499.	5.8	19
146	The identification of DLâ€ <i>threo</i> dihydrosphingosine and sphingosine as novel inhibitors of extracellular signalâ€regulated kinase signalling in airway smooth muscle. British Journal of Pharmacology, 1996, 119, 185-186.	5.4	6
147	The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochemical Journal, 1996, 315, 917-923.	3.7	57
148	cGMP signal termination. Biochemical Society Transactions, 1996, 24, 1019-1022.	3.4	49
149	Sphingomyelin-Derived Lipids Differentially Regulate the Extracellular Signal-Regulated Kinase 2 (ERK-2) and c-Jun N-Terminal Kinase (JNK) Signal Cascades in Airway Smooth Muscle. FEBS Journal, 1996, 237, 819-826.	0.2	116
150	Delayed cardioprotection is associated with the sub-cellular relocalisation of ventricular protein kinase C?, but not p42/44MAPK. Molecular and Cellular Biochemistry, 1996, 160-161, 225-230.	3.1	28
151	The Role of G Proteins in Myocardial Preconditioning. Medical Intelligence Unit, 1996, , 147-166.	0.2	Ο
152	Phosphatidic acid phosphohydrolase in guinea-pig airway smooth muscle. Biochemical Society Transactions, 1995, 23, 198S-198S.	3.4	4
153	Phospholipase D regulation involves extracellular calcium as a conditional requirement for subsequent stimulation by protein kinase C. Biochemical Society Transactions, 1995, 23, 199S-199S.	3.4	1
154	PKC-dependent activation of the type II adenylate cyclase in airway smooth muscle limits the bradykinin-stimulated ERK-2 pathway. Biochemical Society Transactions, 1995, 23, 200S-200S.	3.4	6
155	Ischaemic preconditioning in the rat heart: The role of G-proteins and adrenergic stimulation. Molecular and Cellular Biochemistry, 1995, 147, 123-128.	3.1	22
156	The inhibition of adenylyl cyclase activity in isolated lung membranes by muscarinic and α-adrenoreptor agonists: Role of G-protein α and βγ sub-units. Cellular Signalling, 1995, 7, 157-163.	3.6	8
157	Effects of typeâ€selective phosphodiesterase inhibitors on glucoseâ€induced insulin secretion and islet phosphodiesterase activity. British Journal of Pharmacology, 1995, 115, 1486-1492.	5.4	45
158	Bradykinin-stimulated phosphatidate and 1, 2-diacylglycerol accumulation in guinea-pig airway smooth muscle: Evidence for regulation â€~down-stream' of phospholipases. Cellular Signalling, 1994, 6, 269-277.	3.6	9
159	The identification of apparently novel cyclic AMP and cyclic GMP phosphodiesterase activities in guineaâ€pig tracheal smooth muscle. British Journal of Pharmacology, 1994, 113, 3-4.	5.4	11
160	G-Proteins in Airways Smooth Muscle. , 1994, , 187-213.		0
161	Cellular signal pathways in tracheal smooth muscle. Cellular Signalling, 1993, 5, 401-409.	3.6	3
162	Bradykinin stimulates phospholipase D in primary cultures of guinea-pig tracheal smooth muscle. Biochemical Pharmacology, 1993, 45, 593-603.	4.4	58

#	Article	IF	CITATIONS
163	Differential effects of B ₂ receptor antagonists upon bradykininâ€stimulated phospholipase C and D in guineaâ€pig cultured tracheal smooth muscle. British Journal of Pharmacology, 1993, 110, 477-481.	5.4	29
164	Adenylyl cyclase in lung from hypersensitive guinea pig displays increased responsiveness to guanine nucleotides and isoprenaline: The role of the G proteins Gs and Gi. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1176, 313-320.	4.1	16
165	Muscarinic blockade of βâ€adrenoceptorâ€stimulated adenylyl cyclase: the role of stimulatory and inhibitory guanineâ€nucleotide binding regulatory proteins (G _s and G _i). British Journal of Pharmacology, 1992, 107, 881-887.	5.4	40
166	Interaction of the catalytic subunit of protein kinase A with the lung type V cyclic GMP phosphodiesterase: Modulation of non-catalytic binding sites. Biochemical and Biophysical Research Communications, 1992, 189, 1389-1396.	2.1	18
167	Phosphorylation of the recombinant spliced variants of the α-sub-unit of the stimulatory guanine-nucleotide binding regulatory protein (Gs) by the catalytic sub-unit of protein kinase a. Biochemical and Biophysical Research Communications, 1992, 186, 1081-1086.	2.1	27
168	<u>Phorbol esters trigger the inactivation of the inhibitory guanine-nucleotide binding regulatory protein (Gi) in airway smooth muscle</u> . Biochemical Society Transactions, 1991, 19, 75S-75S.	3.4	1
169	Changes in the phosphorylation state of the inhibitory guanine-nucleotide-binding protein Gi-2 in hepatocytes from lean (Fa/Fa) and obese (fa/fa) Zucker rats. FEBS Journal, 1990, 192, 537-542.	0.2	35
170	Glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase. , 1990, , 63-83.		1
171	Insulin affects the ability of Gi to be ADP-ribosylated but does not elicit its phosphorylation in intact hepatocytes. Biochemical and Biophysical Research Communications, 1989, 165, 251-256.	2.1	20
172	Treatment of intact hepatocytes with either the phorbol ester TPA or glucagon elicits the phosphorylation and functional inactivation of the inhibitory guanine nucleotide regulatory protein Gi. FEBS Letters, 1989, 243, 77-82.	2.8	91
173	Proteolysis of the 52 kDa, insulin-stimulated, peripheral, plasma-membrane cyclic AMP-specific phosphodiesterase. Biochemical Society Transactions, 1989, 17, 666-667.	3.4	1
174	Expression of C-protein β-subunit in lean and obese Zucker rats and streptozotocin-induced diabetic and normal rats. Biochemical Society Transactions, 1989, 17, 667-668.	3.4	1
175	Guanine nucleotide regulatory proteins in insulin's action and in diabetes. Biochemical Society Transactions, 1989, 17, 627-629.	3.4	15
176	An insulin mediator preparation serves to stimulate the cyclic GMP activated cyclic AMP phosphodiesterase rather than other purified insulin-activated cyclic AMP phosphodiesterases. Biochemical and Biophysical Research Communications, 1988, 156, 290-296.	2.1	14
177	[69] Isolation and characterization of insulin-stimulated, high-affinity cAMP phosphodiesterases from rat liver. Methods in Enzymology, 1988, 159, 751-760.	1.0	6
178	Glucagon stimulates adenylate cyclase through GR2 glucagon receptors: a process which can be attenuated by glucagon stimulating inositol phospholipid metabolism through GR1 glucagon receptors. Biochemical Society Transactions, 1987, 15, 21-24.	3.4	16
179	Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue. Biochemical Pharmacology, 1987, 36, 4047-4054.	4.4	14
180	The phorbol ester TPA inhibits cyclic AMP phosphodiesterase activity in intact hepatocytes. FEBS Letters, 1986, 208, 455-459.	2.8	33

#	Article	IF	CITATIONS
181	The mediator is the message: is it part of the answer of insulin's action?. Trends in Biochemical Sciences, 1986, 11, 393-394.	7.5	18
182	A novel method for the purification of the insulin-activated peripheral plasma membrane, high-affinity cyclic AMP phosphodiesterase. Biochemical Society Transactions, 1986, 14, 1016-1016.	3.4	1