List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5103574/publications.pdf Version: 2024-02-01

		14614	20900
315	16,575	66	115
papers	citations	h-index	g-index
323 all docs	323 docs citations	323 times ranked	10247 citing authors

HANGLISCHKA

#	Article	IF	CITATIONS
1	<scp>Molcas</scp> 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 2016, 37, 506-541.	1.5	1,317
2	Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chemical Reviews, 2012, 112, 108-181.	23.0	559
3	The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 228-240.	2.0	422
4	High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density. Physical Chemistry Chemical Physics, 2001, 3, 664-673.	1.3	401
5	Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. Journal of Chemical Theory and Computation, 2012, 8, 2777-2789.	2.3	375
6	Newtonâ€ <scp>X</scp> : a surfaceâ€hopping program for nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 26-33.	6.2	370
7	Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21453-21458.	3.3	362
8	A progress report on the status of the COLUMBUSMRCI program system. International Journal of Quantum Chemistry, 1988, 34, 149-165.	1.0	353
9	Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism. Journal of Chemical Physics, 2004, 120, 7322-7329.	1.2	290
10	Multireference Approaches for Excited States of Molecules. Chemical Reviews, 2018, 118, 7293-7361.	23.0	287
11	Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: Formaldehyde and the photodimerization of ethylene. Journal of Chemical Physics, 2004, 120, 7330-7339.	1.2	216
12	The UV absorption of nucleobases: semi-classical ab initio spectra simulations. Physical Chemistry Chemical Physics, 2010, 12, 4959.	1.3	208
13	The Multiradical Character of One―and Twoâ€Dimensional Graphene Nanoribbons. Angewandte Chemie - International Edition, 2013, 52, 2581-2584.	7.2	197
14	Nonadiabatic Deactivation of 9 <i>H</i> -Adenine: A Comprehensive Picture Based on Mixed Quantumâ^ Classical Dynamics. Journal of the American Chemical Society, 2008, 130, 6831-6839.	6.6	191
15	Wettability of kaolinite (001) surfaces — Molecular dynamic study. Geoderma, 2011, 169, 47-54.	2.3	176
16	Excited-State Intramolecular Proton Transfer:Â A Survey of TDDFT and RI-CC2 Excited-State Potential Energy Surfaces. Journal of Physical Chemistry A, 2005, 109, 3201-3208.	1.1	175
17	Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl)benzothiazole: a case study for excited-state intramolecular proton transfer systems. Physical Chemistry Chemical Physics, 2009, 11, 1406.	1.3	174
18	Surface hopping dynamics using a locally diabatic formalism: Charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. Journal of Chemical Physics, 2012, 137, 22A514.	1.2	173

#	Article	IF	CITATIONS
19	Columbus—a program system for advanced multireference theory calculations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 191-199.	6.2	171
20	Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study. Journal of Chemical Theory and Computation, 2014, 10, 1395-1405.	2.3	170
21	Solvent Effects on Hydrogen BondsA Theoretical Study. Journal of Physical Chemistry A, 2002, 106, 1862-1871.	1.1	167
22	Ab Initio Molecular Dynamics Study of a Monomolecular Water Layer on Octahedral and Tetrahedral Kaolinite Surfaces. Journal of Physical Chemistry B, 2004, 108, 5930-5936.	1.2	146
23	Implementation of an electronic structure program system on the CYBER 205. Journal of Computational Chemistry, 1985, 6, 200-208.	1.5	143
24	Ab initio investigation on the lowest singlet and triplet state of disilyne (Si2H2). Journal of the American Chemical Society, 1983, 105, 6646-6649.	6.6	142
25	Theoretical Study of Vibrational and Optical Spectra of Methylene-Bridged Oligofluorenes. Journal of Physical Chemistry A, 2005, 109, 10232-10238.	1.1	129
26	Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy. Chemical Physics, 2010, 375, 26-34.	0.9	124
27	Structure and stability of the carbocations C2H3+ and C2H4X+, X = hydrogen, fluorine, chlorine, and methyl. Ab initio investigation including electron correlation and a comparison with MINDO/3 results. Journal of the American Chemical Society, 1978, 100, 5297-5305.	6.6	120
28	Rotational Barrier in Phenalenyl Neutral Radical Dimer: Separating Pancake and van der Waals Interactions. Journal of the American Chemical Society, 2014, 136, 5539-5542.	6.6	120
29	A systematic theoretical investigation of the valence excited states of the diatomic molecules B 2 , C 2 , N 2 and O 2. Theoretical Chemistry Accounts, 2001, 105, 227-243.	0.5	110
30	Excited-State Diproton Transfer in [2,2′-Bipyridyl]-3,3′-diol: the Mechanism Is Sequential, Not Concerted. Journal of Physical Chemistry A, 2009, 113, 8490-8499.	1.1	110
31	Nonadiabatic Molecular Dynamics Study of the <i>cis</i> – <i>trans</i> Photoisomerization of Azobenzene Excited to the <i>S</i> ₁ State. Journal of Physical Chemistry A, 2011, 115, 11136-11143.	1.1	109
32	Theoretical Study of Adsorption Sites on the (001) Surfaces of 1:1 Clay Minerals. Langmuir, 2002, 18, 139-147.	1.6	106
33	Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings. Chemical Physics, 2009, 356, 147-152.	0.9	106
34	Ab Initio Molecular Dynamics Study of Adsorption Sites on the (001) Surfaces of 1:1 Dioctahedral Clay Minerals. Journal of Physical Chemistry B, 2002, 106, 11515-11525.	1.2	105
35	Coupled pair functional study on the hydrogen fluoride dimer. I. Energy surface and characterization of stationary points. Chemical Physics, 1988, 121, 137-153.	0.9	102
36	Critical appraisal of excited state nonadiabatic dynamics simulations of 9 <i>H</i> -adenine. Journal of Chemical Physics, 2012, 137, 22A503.	1.2	102

#	Article	IF	CITATIONS
37	The nonadiabatic deactivation paths of pyrrole. Journal of Chemical Physics, 2006, 125, 164323.	1.2	101
38	Automerization reaction of cyclobutadiene and its barrier height: Anab initiobenchmark multireference average-quadratic coupled cluster study. Journal of Chemical Physics, 2006, 125, 064310.	1.2	101
39	Theoretical investigations on carbocations. Structure and stability of C3H5+,C4H9+(2-butyl cation), C5H5+,C6H7+(protonated benzene), and C7H11+(2-norbornyl cation). Journal of the American Chemical Society, 1979, 101, 3479-3486.	6.6	92
40	The interplay of skeletal deformations and ultrafast excited-state intramolecular proton transfer: Experimental and theoretical investigation of 10-hydroxybenzo[h]quinoline. Chemical Physics, 2008, 347, 446-461.	0.9	91
41	Polyradical Character of Triangular Non-Kekulé Structures, Zethrenes, <i>p</i> -Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study. Journal of Physical Chemistry A, 2016, 120, 1625-1636.	1.1	91
42	Ab initio calculations on intermolecular forces. III. Effect of electron correlation on the hydrogen bond in the hydrofluoric acid dimer. Journal of the American Chemical Society, 1974, 96, 4761-4766.	6.6	87
43	An analytical sixâ€dimensional potential energy surface for (HF)2 from ab initio calculations. Journal of Chemical Physics, 1988, 89, 3002-3007.	1.2	87
44	The ethylene 1 1B1u V state revisited. Journal of Chemical Physics, 1999, 110, 7176-7184.	1.2	86
45	Photodynamics Simulations of Thymine: Relaxation into the First Excited Singlet State. Journal of Physical Chemistry A, 2009, 113, 12686-12693.	1.1	85
46	Photodynamical simulations of cytosine: characterization of the ultrafast bi-exponential UV deactivation. Physical Chemistry Chemical Physics, 2011, 13, 6145.	1.3	84
47	Nonadiabatic Dynamics of Uracil: Population Split among Different Decay Mechanisms. Journal of Physical Chemistry A, 2011, 115, 5247-5255.	1.1	84
48	Ab initio studies on hydrogen-bonded clusters. I. Linear and cyclic oligomers of hydrogen cyanide. Chemical Physics, 1987, 113, 53-64.	0.9	83
49	Ab initio studies on heterocyclic conjugated polymers: structure and vibrational spectra of thiophene, oligothiophenes and polythiophene. Computational and Theoretical Chemistry, 1992, 259, 181-198.	1.5	83
50	Nonadiabatic excited-state dynamics of polar ï€-systems and related model compounds of biological relevance. Physical Chemistry Chemical Physics, 2008, 10, 482-494.	1.3	80
51	Electronically excited states and photodynamics: a continuing challenge. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	77
52	A systematic investigation on the structure and stability of the lowest singlet and triplet states of Si2H4 and SiH3SiH and the carbon analogous compounds SiH2CH2, SiH3CH, CH3SiH, C2H4, and CH3CH. Journal of the American Chemical Society, 1982, 104, 5884-5889.	6.6	75
53	Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media. Journal of Physical Chemistry A, 2010, 114, 6757-6765.	1.1	74
54	Double Pancake Bonds: Pushing the Limits of Strong π–π Stacking Interactions. Journal of the American Chemical Society, 2014, 136, 12958-12965.	6.6	74

#	Article	IF	CITATIONS
55	Electronic structure and proton affinity of methylenephosphorane by ab initio methods including electron correlation. Journal of the American Chemical Society, 1977, 99, 353-360.	6.6	73
56	Ab initio calculations on the excited states of π-systems. I. Valence excitations in acetylene. Chemical Physics, 1986, 102, 77-89.	0.9	73
57	The chargeâ€transfer states in a stacked nucleobase dimer complex: A benchmark study. Journal of Computational Chemistry, 2011, 32, 1217-1227.	1.5	73
58	Ab initio studies on heterocyclic conjugated polymers: Structure and vibrational spectra of pyrrole, oligopyrroles, and polypyrrole. Journal of Chemical Physics, 1992, 96, 4464-4473.	1.2	70
59	The decay mechanism of photoexcited guanine â^' A nonadiabatic dynamics study. Journal of Chemical Physics, 2011, 134, 014304.	1.2	70
60	UV Absorption Spectrum of Alternating DNA Duplexes. Analysis of Excitonic and Charge Transfer Interactions. Journal of Physical Chemistry A, 2012, 116, 11151-11160.	1.1	70
61	A massively parallel multireference configuration interaction program: The parallel COLUMBUS program. Journal of Computational Chemistry, 1997, 18, 430-448.	1.5	69
62	Spectral broadening and diffusion by torsional motion in biphenyl. Journal of Chemical Physics, 2005, 123, 144311.	1.2	69
63	The effect of hydrogen bonding on the excited-state proton transfer in 2-(2′-hydroxyphenyl)benzothiazole: a TDDFT molecular dynamics study. Physical Chemistry Chemical Physics, 2012, 14, 9016.	1.3	69
64	An ab initio calculation of the intramolecular stretching spectra for the HF dimer and its Dâ€substituted isotopic species. Journal of Chemical Physics, 1990, 93, 6266-6280.	1.2	68
65	Excitation energies and transition moments by the multireference averaged quadratic coupled cluster (MR-AQCC) method. Physical Chemistry Chemical Physics, 2000, 2, 2067-2073.	1.3	68
66	New implementation of the graphical unitary group approach for multireference direct configuration interaction calculations. International Journal of Quantum Chemistry, 1981, 20, 91-100.	1.0	68
67	Can the Nonadiabatic Photodynamics of Aminopyrimidine Be a Model for the Ultrafast Deactivation of Adenine?. Journal of Physical Chemistry A, 2007, 111, 2852-2858.	1.1	67
68	Does Stacking Restrain the Photodynamics of Individual Nucleobases?. Journal of the American Chemical Society, 2010, 132, 8261-8263.	6.6	67
69	Excited-state non-adiabatic dynamics simulations of pyrrole. Molecular Physics, 2009, 107, 845-854.	0.8	65
70	Electronically Excited States in Poly(<i>p</i> -phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations. Journal of Physical Chemistry A, 2013, 117, 2181-2189.	1.1	65
71	Ultrafast two-step process in the non-adiabatic relaxation of the CH2 molecule. Molecular Physics, 2006, 104, 1053-1060.	0.8	64
72	A note on the AB initio calculation of intermolecular potentials: the HF dimer. Chemical Physics Letters, 1979, 66, 108-110.	1.2	63

5

#	Article	IF	CITATIONS
73	An ab initio calculation of the stretching energies for the HF dimer. Journal of Chemical Physics, 1990, 92, 7432-7440.	1.2	62
74	Excited State Properties of 7-Hydroxy-4-methylcoumarin in the Gas Phase and in Solution. A Theoretical Study. Journal of Physical Chemistry A, 2005, 109, 11860-11869.	1.1	62
75	Dependence of Optical Properties of Oligo-para-phenylenes on Torsional Modes and Chain Length. Journal of Physical Chemistry B, 2007, 111, 7954-7962.	1.2	62
76	Intramolecular Charge-Transfer Excited-State Processes in 4-(<i>N</i> , <i>N</i> -Dimethylamino)benzonitrile: The Role of Twisting and the πσ* State. Journal of Physical Chemistry A, 2015, 119, 6232-6243.	1.1	60
77	An ab initio semirigid bender calculation of the rotation and transâ€ŧunneling spectra of (HF)2 and (DF)2. Journal of Chemical Physics, 1989, 91, 5154-5159.	1.2	59
78	<i>Ab Initio</i> Modeling of Excitonic and Charge-Transfer States in Organic Semiconductors: The PTB1/PCBM Low Band Gap System. Journal of the American Chemical Society, 2013, 135, 18252-18255.	6.6	59
79	UV excitation and radiationless deactivation of imidazole. Journal of Chemical Physics, 2009, 130, 034305.	1.2	58
80	On the structure and stability of singlet and triplet disilene and silylsilylene. Chemical Physics Letters, 1982, 85, 467-471.	1.2	57
81	Bridged structures in multiply bonded silicon compounds: Disilyne, protonated disilyne and disilene. Chemical Physics Letters, 1984, 112, 33-40.	1.2	57
82	π–π stacking between polyaromatic hydrocarbon sheets beyond dispersion interactions. Physical Chemistry Chemical Physics, 2016, 18, 22300-22310.	1.3	57
83	Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Applied Materials Today, 2021, 22, 100924.	2.3	57
84	A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	56
85	Nonadiabatic Photodynamics of a Retinal Model in Polar and Nonpolar Environment. Journal of Physical Chemistry A, 2013, 117, 2790-2799.	1.1	55
86	Ab initio calculations on small hydrides including electron correlation. Theoretica Chimica Acta, 1973, 31, 39-48.	0.9	54
87	Dynamics starting at a conical intersection: Application to the photochemistry of pyrrole. Journal of Chemical Physics, 2009, 131, 024312.	1.2	54
88	Molecular Dynamics Simulations of Water Molecule-Bridges in Polar Domains of Humic Acids. Environmental Science & Technology, 2011, 45, 8411-8419.	4.6	54
89	Comparison of LC-TDDFT and ADC(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes. Journal of Chemical Theory and Computation, 2014, 10, 3280-3289.	2.3	54
90	A systematic ab initio investigation of the open and ring structures of ozone. Chemical Physics Letters, 1998, 293, 72-80.	1.2	53

#	Article	IF	CITATIONS
91	Combined ab initio and density functional study on polaron to bipolaron transitions in oligophenyls and oligothiophenes. Journal of Chemical Physics, 1997, 107, 3021-3031.	1.2	52
92	Acid–base properties of a goethite surface model: A theoretical view. Geochimica Et Cosmochimica Acta, 2008, 72, 3587-3602.	1.6	50
93	The Diels–Alder Reaction of Ethene and 1,3-Butadiene: An Extended Multireference ab initio Investigation. ChemPhysChem, 2004, 5, 1365-1371.	1.0	47
94	Stabilizing Capacity of Water Bridges in Nanopore Segments of Humic Substances: A Theoretical Investigation. Journal of Physical Chemistry C, 2009, 113, 16468-16475.	1.5	47
95	Solvent effects in electronically excited states using the continuum solvation model COSMO in combination with multireference configuration interaction with singles and doubles (MR-CISD). Theoretical Chemistry Accounts, 2004, 111, 78-89.	0.5	46
96	Simulation of the photodeactivation of formamide in the nO-ï€â^— and ï€-ï€â^— states: An <i>ab initio</i> on-the-fly surface-hopping dynamics study. Journal of Chemical Physics, 2007, 127, 234303.	1.2	46
97	The functionality of cation bridges for binding polar groups in soil aggregates. International Journal of Quantum Chemistry, 2011, 111, 1531-1542.	1.0	46
98	Electronic excitation and structural relaxation of the adenine dinucleotide in gas phase and solution. Photochemical and Photobiological Sciences, 2013, 12, 1440-1452.	1.6	46
99	Anabinitioinvestigation of the chargeâ€ŧransfer complexes of alkali atoms with oligo (α,α′) thiophenes and oligoparaphenylenes: A model calculation on polaronic and bipolaronic defect structures. Journal of Chemical Physics, 1995, 103, 1508-1522.	1.2	45
100	Response of sorption processes of MCPA to the amount and origin of organic matter in a long-term field experiment. European Journal of Soil Science, 2001, 52, 279-286.	1.8	45
101	The valence-excited states T1–T4 and S1–S2 of acetylene: A high-level MR-CISD and MR-AQCC investigation of stationary points, potential energy surfaces, and surface crossings. Journal of Chemical Physics, 2003, 118, 1702-1713.	1.2	45
102	An extended multireference study of the electronic states of para-benzyne. Journal of Chemical Physics, 2008, 129, 044306.	1.2	45
103	Excited-State Intermolecular Proton Transfer Reactions of 7-Azaindole(MeOH) _{<i>n</i>} (<i>n</i> = 1–3) Clusters in the Gas phase: On-the-Fly Dynamics Simulation. Journal of Physical Chemistry A, 2011, 115, 14129-14136.	1.1	45
104	Interaction of Acetate Anion with Hydrated Al3+Cation:Â A Theoretical Study. Journal of Physical Chemistry A, 2000, 104, 6824-6833.	1.1	44
105	A systematic theoretical investigation of the lowest valence- and Rydberg-excited singlet states of trans-butadiene. The character of the 1 1 B u (V) state revisited. Theoretical Chemistry Accounts, 2004, 112, 16-26.	0.5	44
106	A parallel implementation of the COLUMBUS multireference configuration interaction program. Theoretica Chimica Acta, 1993, 84, 489-509.	0.9	43
107	Excited-State Properties and Environmental Effects for Protonated Schiff Bases: A Theoretical Study. ChemPhysChem, 2006, 7, 2089-2096.	1.0	43
108	Excited-State Proton Transfer in 7-Hydroxy-4-methylcoumarin along a Hydrogen-Bonded Water Wire. Journal of Physical Chemistry A, 2007, 111, 127-135.	1.1	43

#	Article	IF	CITATIONS
109	Azomethane: Nonadiabatic Photodynamical Simulations in Solution. Journal of Physical Chemistry A, 2010, 114, 12585-12590.	1.1	43
110	Absorption and Fluorescence of PRODAN in Phospholipid Bilayers: A Combined Quantum Mechanics and Classical Molecular Dynamics Study. Journal of Physical Chemistry A, 2011, 115, 11428-11437.	1.1	43
111	Study of the Diradicaloid Character in a Prototypical Pancakeâ€Bonded Dimer: The Stacked Tetracyanoethylene (TCNE) Anion Dimer and the Neutral K ₂ TCNE ₂ Complex. ChemPhysChem, 2014, 15, 165-176.	1.0	43
112	Intermolecular interactions and charge transfer transitions in aromatic hydrocarbon–tetracyanoethylene complexes. Physical Chemistry Chemical Physics, 2014, 16, 20586-20597.	1.3	43
113	The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. Journal of Chemical Physics, 2020, 152, 134110.	1.2	42
114	A density-functional investigation of aluminium(III)–citrate complexes. Physical Chemistry Chemical Physics, 2001, 3, 1979-1985.	1.3	41
115	Determination of energy minima and saddle points using multireference configuration interaction methods in combination with reduced gradient following: The S0 surface of H2CO and the T1 and T2 surfaces of acetylene. Journal of Computational Chemistry, 2002, 23, 576-583.	1.5	41
116	A Multireference Configuration Interaction Investigation of the Excited-State Energy Surfaces of Fluoroethylene (C2H3F). Journal of Physical Chemistry A, 2005, 109, 5168-5175.	1.1	41
117	Ultrafast non-adiabatic dynamics of ethylene including Rydberg states. Molecular Physics, 2013, 111, 2439-2450.	0.8	41
118	Linear versus cyclic (HCN)3: An ab initio study on structure, vibrational spectra, and infrared intensities. Journal of Chemical Physics, 1990, 92, 2469-2477.	1.2	40
119	From butadiene to polyacetylene: An ab initio study on the vibrational spectra of polyenes. Journal of Chemical Physics, 1992, 96, 982-996.	1.2	40
120	Ab initio nonadiabatic dynamics study of ultrafast radiationless decay over conical intersections illustrated on the Na3F cluster. Journal of Chemical Physics, 2006, 125, 024303.	1.2	40
121	Interaction of the 2,4-dichlorophenoxyacetic acid herbicide with soil organic matter moieties: a theoretical study. European Journal of Soil Science, 2007, 58, 889-899.	1.8	40
122	Concave or convex π-dimers: the role of the pancake bond in substituted phenalenyl radical dimers. Physical Chemistry Chemical Physics, 2015, 17, 23963-23969.	1.3	40
123	Adsorption of organic substances on broken clay surfaces: A quantum chemical study. Journal of Computational Chemistry, 2003, 24, 1853-1863.	1.5	39
124	Quantum Chemical Adsorption Studies on the (110) Surface of the Mineral Goethite. Journal of Physical Chemistry C, 2007, 111, 877-885.	1.5	39
125	Is the Photoinduced Isomerization in Retinal Protonated Schiff Bases a Single- or Double-Torsional Process?. Journal of Physical Chemistry A, 2009, 113, 11907-11918.	1.1	39
126	Geometry optimization of excited valence states of formaldehyde using analytical multireference configuration interaction singles and doubles and multireference averaged quadratic coupled-cluster gradients, and the conical intersection formed by the 1 [sup 1]B[sub 1](σ-Ï€[sup â^—]) and 2 [sup 1]A[sub 1](Ï€-Ï€[sup â^—]) states. Journal of Chemical Physics, 2001, 114, 746.	1.2	38

#	Article	IF	CITATIONS
127	The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models—A theoretical study. Chemical Physics, 2008, 349, 69-76.	0.9	37
128	Model study on sorption of polycyclic aromatic hydrocarbons to goethite. Journal of Colloid and Interface Science, 2009, 330, 244-249.	5.0	37
129	Modeling Catalytic Effects of Clay Mineral Surfaces on Peptide Bond Formation. Journal of Physical Chemistry B, 2004, 108, 10120-10130.	1.2	36
130	High-level theoretical benchmark investigations of the UV-vis absorption spectra of paradigmatic polycyclic aromatic hydrocarbons as models for graphene quantum dots. Journal of Chemical Physics, 2019, 150, 124302.	1.2	35
131	Photodynamics of Azomethane: A Nonadiabatic Surface-Hopping Study ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8778-8785.	1.1	34
132	Excited states and excitonic interactions in prototypic polycyclic aromatic hydrocarbon dimers as models for graphitic interactions in carbon dots. Physical Chemistry Chemical Physics, 2019, 21, 9077-9088.	1.3	34
133	Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods. Journal of Chemical Physics, 2014, 141, 074105.	1.2	33
134	Diradical Organic Oneâ€Dimensional Polymers Synthesized on a Metallic Surface. Angewandte Chemie - International Edition, 2020, 59, 17594-17599.	7.2	33
135	Mechanism of Ultrafast Photodecay in Restricted Motions in Protonated Schiff Bases: The Pentadieniminium Cation. Journal of Chemical Theory and Computation, 2008, 4, 1189-1199.	2.3	32
136	Strikingly Different Effects of Hydrogen Bonding on the Photodynamics of Individual Nucleobases in DNA: Comparison of Guanine and Cytosine. Journal of the American Chemical Society, 2012, 134, 13662-13669.	6.6	31
137	New Insights into the State Trapping of UV-Excited Thymine. Molecules, 2016, 21, 1603.	1.7	31
138	A density functional theoretical study on solvated Al3+–oxalate complexes: structures and thermodynamic properties. Physical Chemistry Chemical Physics, 2000, 2, 2845-2850.	1.3	30
139	Multiple pathways in the photodynamics of a polar π-bond: A case study of silaethylene. Chemical Physics Letters, 2006, 418, 377-382.	1.2	30
140	Singlet L _a and L _b Bands for N-Acenes (<i>N</i> = 2–7): A CASSCF/CASPT2 Study. Journal of Chemical Theory and Computation, 2017, 13, 4297-4306.	2.3	30
141	AB initio calculations on intermolecular forces. The systems He…HF and He…H2O. Chemical Physics Letters, 1973, 20, 448-453.	1.2	29
142	Effect of substituents on the excited-state dynamics of the modified DNA bases 2,4-diaminopyrimidine and 2,6-diaminopurine. Physical Chemistry Chemical Physics, 2010, 12, 5375.	1.3	29
143	Matrix-controlled photofragmentation of formamide: dynamics simulation in argon by nonadiabatic QM/MM method. Physical Chemistry Chemical Physics, 2010, 12, 12719.	1.3	29
144	Ab initio calculations including electron correlation, and mindo/3 calculations on the system C2H+7. Chemical Physics Letters, 1978, 58, 175-179.	1.2	28

#	Article	IF	CITATIONS
145	Why water makes 2-aminopurine fluorescent?. Physical Chemistry Chemical Physics, 2015, 17, 15452-15459.	1.3	28
146	Cope Rearrangement of 1,5-Hexadiene:  Full Geometry Optimizations Using Analytic MR-CISD and MR-AQCC Gradient Methods. Journal of Physical Chemistry A, 2003, 107, 1175-1180.	1.1	27
147	Theoretical Study of Metalâ^Ligand Interaction in Sm(III), Eu(III), and Tb(III) Complexes of Coumarin-3-Carboxylic Acid in the Gas Phase and Solution. Inorganic Chemistry, 2007, 46, 10926-10936.	1.9	27
148	The accuracy of molecular bond lengths computed by multireference electronic structure methods. Chemical Physics, 2008, 349, 37-57.	0.9	27
149	The electronically excited states of RDX (hexahydroâ€1,3,5â€ŧrinitroâ€1,3,5â€ŧriazine): Vertical excitations. International Journal of Quantum Chemistry, 2009, 109, 2348-2355.	1.0	27
150	Semiclassical dynamics simulations of charge transport in stacked π-systems. Journal of Chemical Physics, 2011, 134, 034309.	1.2	27
151	Multi-layer 3D chirality: new synthesis, AIE and computational studies. Science China Chemistry, 2020, 63, 692-698.	4.2	27
152	SORPTION OF PHENOXYACETIC ACID HERBICIDES ON THE KAOLINITE MINERAL SURFACE – AN AB INITIO MOLECULAR DYNAMICS SIMULATION. Soil Science, 2004, 169, 44-54.	0.9	26
153	Solvatochromic and Ionochromic Effects of Iron(II)bis(1,10-phenanthroline)dicyano: a Theoretical Study. Inorganic Chemistry, 2010, 49, 1634-1646.	1.9	26
154	Study of solvent effect on the stability of water bridge-linked carboxyl groups in humic acid models. Geoderma, 2011, 169, 20-26.	2.3	26
155	Conformational Behavior and Optical Properties of a Fluorophore Dimer as a Model of Luminescent Centers in Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 14327-14337.	1.5	25
156	Ab Initio MR-CISD Study of Gas-Phase Basicity of Formamide in the First Excited Singlet State. Journal of Physical Chemistry A, 2004, 108, 10317-10325.	1.1	24
157	<i>Ab initio</i> calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates. Clays and Clay Minerals, 2007, 55, 220-232.	0.6	24
158	Thermodynamic stability of hydrogenâ€bonded systems in polar and nonpolar environments. Journal of Computational Chemistry, 2010, 31, 2046-2055.	1.5	24
159	Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. Journal of Organic Chemistry, 2018, 83, 244-252.	1.7	24
160	Gauche- versus s-cis-butadiene revisited: a molecular dynamics simulation of the Ar matrix effect. Chemical Physics Letters, 1992, 189, 281-286.	1.2	23
161	Simultaneous calculation of Rydberg and valence excited states of formaldehyde. Theoretical Chemistry Accounts, 2001, 106, 369-378.	0.5	23
162	Sorption of naphthalene derivatives to soils from a long-term field experiment. Chemosphere, 2005, 59, 639-647.	4.2	23

#	Article	IF	CITATIONS
163	Laser pulse trains for controlling excited state dynamics of adenine in water. Physical Chemistry Chemical Physics, 2012, 14, 4687.	1.3	23
164	How to efficiently tune the biradicaloid nature of acenes by chemical doping with boron and nitrogen. Physical Chemistry Chemical Physics, 2017, 19, 19225-19233.	1.3	23
165	Dynamics of benzene excimer formation from the parallel-displaced dimer. Physical Chemistry Chemical Physics, 2019, 21, 13916-13924.	1.3	23
166	An ab initio study of the vibrational spectra of Li-doped thiophene, bithiophene, benzene and biphenyl as model systems for (bi)polaronic defects. Computational and Theoretical Chemistry, 1996, 364, 15-31.	1.5	22
167	Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O–O–CH2–CH2· biradical: Non-RRKM dynamics. Journal of Chemical Physics, 2012, 137, 044305.	1.2	22
168	Radical sites in humic acids: A theoretical study on protocatechuic and gallic acids. Computational and Theoretical Chemistry, 2014, 1032, 42-49.	1.1	22
169	Absorption and Fluorescence Spectra of Poly(<i>p</i> -phenylenevinylene) (PPV) Oligomers: An <i>ab Initio</i> Simulation. Journal of Physical Chemistry A, 2015, 119, 1787-1795.	1.1	22
170	Insight into the Excited State Electronic and Structural Properties of the Organic Photovoltaic Donor Polymer Poly(thieno[3,4- <i>b</i>]thiophene benzodithiophene) by Means of <i>ab Initio</i> and Density Functional Theory. Journal of Physical Chemistry C, 2016, 120, 21818-21826.	1.5	22
171	A systematic analysis of excitonic properties to seek optimal singlet fission: the BN-substitution patterns in tetracene. Journal of Materials Chemistry C, 2020, 8, 7793-7804.	2.7	22
172	Ab initio calculations on the excited states of π-systems. II. Valence excitations in diacetylene. Chemical Physics, 1986, 102, 91-102.	0.9	21
173	Torsional potentials and full-dimensional simulation of electronic absorption and fluorescence spectra of para-phenylene oligomers using the semiempirical self-consistent charge density-functional tight binding approach. Journal of Chemical Physics, 2008, 129, 164905.	1.2	21
174	O(³ P) + C ₂ H ₄ Potential Energy Surface: Study at the Multireference Level. Journal of Physical Chemistry A, 2009, 113, 12663-12674.	1.1	21
175	Non-adiabatic excited state dynamics of riboflavin after photoexcitation. Physical Chemistry Chemical Physics, 2012, 14, 8693.	1.3	21
176	Multiscale Simulation of the Ground and Photo-Induced Charge-Separated States of a Molecular Triad in Polar Organic Solvent: Exploring the Conformations, Fluctuations, and Free Energy Landscapes. Journal of Physical Chemistry B, 2013, 117, 12065-12075.	1.2	21
177	Comparison of multireference configuration interaction potential energy surfaces for HÂ+ÂO2Â→ÂHO2: the effect of internal contraction. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	21
178	Evaluation of the quasi correlated tight-binding (QCTB) model for describing polyradical character in polycyclic hydrocarbons. Journal of Chemical Physics, 2017, 146, 064106.	1.2	21
179	Quantum chemical calculations of electronically excited states: formamide, its protonated form and alkali cation complexes as case studies. Monatshefte Für Chemie, 2008, 139, 319-328.	0.9	20
180	Influence of the active space on CASSCF nonadiabatic dynamics simulations. International Journal of Quantum Chemistry, 2011, 111, 3307-3315.	1.0	20

#	Article	IF	CITATIONS
181	Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach. Topics in Current Chemistry, 2014, 356, 1-37.	4.0	20
182	A Comparison of Variational and Coupled-Cluster Calculations of Molecular Properties:  The Polarizabilities of BeO, 1Σg+, and C2, 1Σg+, 3Îu, and 3Σg The Journal of Physical Chemistry, 1996, 100, 6325-6331.	2.9	19
183	The effect of C5 substitution on the photochemistry of uracil. Physical Chemistry Chemical Physics, 2010, 12, 4924.	1.3	19
184	Analysis of charge transfer transitions in stacked π-electron donor–acceptor complexes. Physical Chemistry Chemical Physics, 2018, 20, 26957-26967.	1.3	19
185	On the Bond-Stretch Isomerism in the Benzo[1,2:4,5]dicyclobutadiene System—An ab initio MR-AQCC Study. ChemPhysChem, 2004, 5, 975-981.	1.0	18
186	Computational and Methodological Elements for Nonadiabatic Trajectory Dynamics Simulations of Molecules. Advanced Series in Physical Chemistry, 2011, , 415-462.	1.5	18
187	The stability of the acetic acid dimer in microhydrated environments and in aqueous solution. Physical Chemistry Chemical Physics, 2012, 14, 4162.	1.3	18
188	Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO ₂ (110) Intermolecular Interaction. Journal of Physical Chemistry C, 2013, 117, 17613-17622.	1.5	18
189	Synthesis, Spectroscopy, and Computational Analysis of Photoluminescent Bis(aminophenyl)‧ubstituted Thiophene Derivatives. ChemPhysChem, 2013, 14, 1016-1024.	1.0	18
190	Emission Energies and Stokes Shifts for Single Polycyclic Aromatic Hydrocarbon Sheets in Comparison to the Effect of Excimer Formation. Journal of Physical Chemistry Letters, 2019, 10, 5592-5597.	2.1	18
191	An Ab Initio Study of the Excited States, Isomerization Energy Profiles and Conical Intersections of a Chiral Cyclohexylidene Derivative. Journal of Physical Chemistry A, 2007, 111, 238-243.	1.1	17
192	Excited state properties, fluorescence energies, and lifetime of a poly(fluorene-pyridine) copolymer, based on TD-DFT investigation. Journal of Computational Chemistry, 2007, 28, 1735-1742.	1.5	17
193	Singlet and triplet potential surfaces for the O2+C2H4 reaction. Journal of Chemical Physics, 2010, 133, 184306.	1.2	17
194	The electronic states of a double carbon vacancy defect in pyrene: a model study for graphene. Physical Chemistry Chemical Physics, 2015, 17, 12778-12785.	1.3	17
195	Dynamics of Pyrene-Dimer Association and Ensuing Pyrene-Dimer Dissociation. Journal of Physical Chemistry A, 2020, 124, 8907-8917.	1.1	17
196	The structure of protonated disilene. Chemical Physics Letters, 1983, 98, 454-456.	1.2	16
197	A theoretical calculation of the rotation-vibration energies for lithium hydroxide, LiOH. Journal of Molecular Spectroscopy, 1989, 135, 89-104.	0.4	16
198	Theoretical investigation of the mode-specific induced non-radiative decay in 2-pyridone. Chemical Physics, 2008, 349, 278-286.	0.9	16

#	Article	IF	CITATIONS
199	The photodynamics of 2,4-diaminopyrimidine in comparison with 4-aminopyrimidine: The effect of amino-substitution. Chemical Physics Letters, 2010, 497, 129-134.	1.2	16
200	The electronic transitions of analogs of red wine pyranoanthocyanin pigments. Photochemical and Photobiological Sciences, 2019, 18, 45-53.	1.6	16
201	Interplay of Biradicaloid Character and Singlet/Triplet Energy Splitting for <i>cis</i> -/ <i>trans</i> -Diindenoacenes and Related Benzothiophene-Capped Oligomers as Revealed by Extended Multireference Calculations. Journal of Organic Chemistry, 2020, 85, 3664-3675.	1.7	16
202	A comparison of neutral and charged species of one- and two-dimensional models of graphene nanoribbons using multireference theory. Journal of Chemical Physics, 2015, 142, 054302.	1.2	15
203	Unexpected Charge Effects Strengthen π–Stacking Pancake Bonding. Jacs Au, 2021, 1, 1647-1655.	3.6	15
204	The barrier topography of the H+F2 potential energy surface. Physical Chemistry Chemical Physics, 2000, 2, 513-521.	1.3	14
205	A wave-packet simulation of the low-lying singlet electronic transitions of acetylene. Journal of Chemical Physics, 2005, 122, 184312.	1.2	14
206	The effect of hydration on the photo-deactivation pathways of 4-aminopyrimidine. Chemical Physics, 2010, 375, 110-117.	0.9	14
207	Diradical Organic Oneâ€Dimensional Polymers Synthesized on a Metallic Surface. Angewandte Chemie, 2020, 132, 17747-17752.	1.6	14
208	A coupled Hartree-Fock study on nuclear magnetic shielding in (HF)2 and (H2O)2. Chemical Physics Letters, 1981, 84, 94-98.	1.2	13
209	Lithium- and chlorine-doped biphenyl dimers as models for interchain polarons and bipolarons — a density functional study. Chemical Physics Letters, 1996, 257, 592-600.	1.2	13
210	TORSIONAL POTENTIALS AND FULL-DIMENSIONAL SIMULATION OF ELECTRONIC ABSORPTION SPECTRA OF <i>para</i> -PHENYLENEVINYLENE OLIGOMERS USING SEMIEMPIRICAL HAMILTONIANS. Journal of Theoretical and Computational Chemistry, 2010, 09, 249-263.	1.8	13
211	Theoretical study of the excitation spectrum of azomethane. Chemical Physics, 2011, 380, 9-16.	0.9	13
212	Local Electron Correlation Treatment in Extended Multireference Calculations: Effect of Acceptor–Donor Substituents on the Biradical Character of the Polycyclic Aromatic Hydrocarbon Heptazethrene. Journal of Chemical Theory and Computation, 2017, 13, 2612-2622.	2.3	13
213	The effect of hydrogen bonding on the nonadiabatic dynamics of a thymine-water cluster. Chemical Physics, 2018, 515, 472-479.	0.9	13
214	Characterization of glycan isomers using magnetic carbon nanoparticles as a MALDI co-matrix. RSC Advances, 2019, 9, 20137-20148.	1.7	13
215	Nonadiabatic Dynamics of Charge-Transfer States Using the Anthracene–Tetracyanoethylene Complex as a Prototype. Journal of Physical Chemistry A, 2020, 124, 3347-3357.	1.1	13
216	Ab initio calculation of stationary points for the ground and the first excited state of HCO. International Journal of Quantum Chemistry, 1995, 55, 261-268.	1.0	12

#	Article	IF	CITATIONS
217	Reducing I/O costs for the eigenvalue procedure in large-scale configuration interaction calculations. Journal of Computational Chemistry, 2002, 23, 1121-1125.	1.5	12
218	Proton transfer processes in polar regions of humic substances initiated by aqueous aluminum cation bridges: A computational study. Geoderma, 2014, 213, 115-123.	2.3	12
219	Direct Dynamics Simulation of the Activation and Dissociation of 1,5-Dinitrobiuret (HDNB). Journal of Physical Chemistry A, 2014, 118, 2228-2236.	1.1	12
220	Hydrogen Abstraction from the Hydrazine Molecule by an Oxygen Atom. Journal of Physical Chemistry A, 2015, 119, 1628-1635.	1.1	12
221	Cation–΀ interactions in competition with cation microhydration: a theoretical study of alkali metal cation–pyrene complexes. Journal of Molecular Modeling, 2017, 23, 131.	0.8	12
222	Energy transfer mechanism in luminescence Eu(III) and Tb(III) complexes of coumarin-3-carboxylic acid: A theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118591.	2.0	12
223	The theory of intermolecular force - survey of results. Pure and Applied Chemistry, 1979, 51, 1627-1636.	0.9	11
224	Revisiting the stationary points on the potential energy surface of tetramethylene at the MR-AQCC level using analytic gradients. Journal of Chemical Physics, 2003, 118, 10963-10972.	1.2	11
225	[2.2.2]Propellane Isomerization by Grob Rearrangement: An Ab Initio MR-AQCC Study. European Journal of Organic Chemistry, 2007, 2007, 3173-3178.	1.2	11
226	Conical intersections and strong nonadiabatic coupling effects in singlet-excited acetylene: An ab initio quantum dynamical study. Chemical Physics, 2008, 343, 319-328.	0.9	11
227	The Isomerization Barrier in Cyanocyclobutadienes: An ab Initio Multireference Average Quadratic Coupled Cluster Study. Journal of Physical Chemistry A, 2009, 113, 8351-8358.	1.1	11
228	QM/MM non-adiabatic decay dynamics of formamide in polar and non-polar solvents. Physical Chemistry Chemical Physics, 2012, 14, 13262.	1.3	11
229	Proton exchange reactions of C2–C4 alkanes sorbed in ZSM-5 zeolite. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	11
230	Tuning the Biradicaloid Nature of Polycyclic Aromatic Hydrocarbons: The Effect of Graphitic Nitrogen Doping in Zethrenes. ChemPhysChem, 2018, 19, 2492-2499.	1.0	11
231	Adsorption process of polar and nonpolar compounds in a nanopore model of humic substances. European Journal of Soil Science, 2020, 71, 845-855.	1.8	11
232	Introduction of polar or nonpolar groups at the hydroquinone units can lead to the destruction of the columnar structure of Pillar[5]arenes. Computational and Theoretical Chemistry, 2019, 1161, 1-9.	1.1	11
233	Excitonic and charge transfer interactions in tetracene stacked and T-shaped dimers. Journal of Chemical Physics, 2021, 154, 044306.	1.2	11
234	A theoretical investigation on the systems C2H5O+ and C2H5S+. Chemical Physics Letters, 1979, 63, 326-331.	1.2	10

#	Article	IF	CITATIONS
23	An efficient data compression method for the Davidson subspace diagonalization scheme. Theoretica Chimica Acta, 1995, 92, 339-349.	0.9	10
23	6 Valence and Rydberg states of protonated formaldehyde. Chemical Physics Letters, 2003, 374, 587-593.	1.2	10
23	On the ground and some low-lying excited states of ScB: A multiconfigurational study. Journal of Chemical Physics, 2007, 126, 214311.	1.2	10
23	 A grid services cloud for molecular modelling workflows. International Journal of Web and Grid Services, 2010, 6, 176. 	0.4	10
23	 Photostability and solvation: photodynamics of microsolvated zwitterionic glycine. Physical Chemistry Chemical Physics, 2010, 12, 4906. 	1.3	10
24	 Photodynamics of the adenine model 4-aminopyrimidine embedded within double strand of DNA. Collection of Czechoslovak Chemical Communications, 2011, 76, 631-643. 	1.0	10
24	1 Electronic spectra of nitroethylene. International Journal of Quantum Chemistry, 2012, 112, 1225-1232.	1.0	10
24	The Diverse Manifold of Electronic States Generated by a Single Carbon Defect in a Graphene Sheet: Multireference Calculations Using a Pyrene Defect Model. ChemPhysChem, 2014, 15, 3334-3341.	1.0	10
24	Investigation of the ozone formation reaction pathway: Comparisons of full configuration interaction quantum Monte Carlo and fixed-node diffusion Monte Carlo with contracted and uncontracted MRCI. Journal of Chemical Physics, 2017, 147, 094306.	1.2	10
24	The characterization of electronic defect states of single and double carbon vacancies in graphene sheets using molecular density functional theory. Molecular Physics, 2019, 117, 1519-1531.	0.8	10
24	Tuning the UV spectrum of PAHs by means of different N-doping types taking pyrene as paradigmatic example: categorization <i>via</i> valence bond theory and high-level computational approaches. Physical Chemistry Chemical Physics, 2020, 22, 22003-22015.	1.3	10
24	 Triple-Columned and Multiple-Layered 3D Polymers: Design, Synthesis, Aggregation-Induced Emission (AIE), and Computational Study. Research, 2021, 2021, 3565791. 	2.8	10
24	 Molecular Dynamics Simulation of the Excited-State Proton Transfer Mechanism in 3-Hydroxyflavone Using Explicit Hydration Models. Journal of Physical Chemistry A, 2021, 125, 5765-5778. 	1.1	10
24	 Exploration of Graphene Defect Reactivity toward a Hydrogen Radical Utilizing a Preactivated Circumcoronene Model. Journal of Physical Chemistry A, 2021, 125, 1152-1165. 	1.1	10
24	MR-CISD and MR-AQCC Calculation of Excited States of Malonaldehyde: Geometry Optimizations Using Analytical Energy Gradient Methods and a Systematic Investigation of Reference Configuration Sets. Collection of Czechoslovak Chemical Communications, 2003, 68, 447-462.	1.0	10
25	O Multireference CI Study of Excitation Energies and Potential Energy Surfaces of CH3Fâ€. Journal of Physical Chemistry A, 2004, 108, 3111-3118.	1.1	9
25	Theoretical Study of the Relations between Structure and Photophysical Properties of Model Oligofluorenes with Central Keto Defect. Journal of Physical Chemistry A, 2009, 113, 14141-14149.	1.1	9
25	Abâ€Initio―und semiempirische LCAOâ€MOâ€Berechnungen mit Berücksichtigung der Elektronenkorrelatio	n _{0.0}	9

zum Energieprofil der Hâ€Verschiebung im Ethylkation. Zeitschrift Fżr Chemie, 1977, 17, 67-68.

#	Article	IF	CITATIONS
253	Structure and electronic states of a graphene double vacancy with an embedded Si dopant. Journal of Chemical Physics, 2017, 147, 194702.	1.2	9
254	Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen. Chemical Physics, 2017, 482, 346-354.	0.9	9
255	A Multireference Ab Initio Study of the Diradical Isomers of Pyrazine. Journal of Physical Chemistry A, 2019, 123, 2049-2057.	1.1	9
256	Doping Capabilities of Fluorine on the UV Absorption and Emission Spectra of Pyrene-Based Graphene Quantum Dots. Journal of Physical Chemistry A, 2020, 124, 10954-10966.	1.1	9
257	A computational study of the ground and excited state acidities of synthetic analogs of red wine pyranoanthocyanins. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	9
258	Molecular species in liquid carboxylic acids. Chemical Physics Letters, 1976, 40, 66-71.	1.2	8
259	Structure and harmonic vibrational frequencies of cyclopentadiene in the lowest singlet states. Computational and Theoretical Chemistry, 1994, 303, 71-82.	1.5	8
260	Potential-energy surfaces for charge exchange between singly charged ions and a LiF surface. Physical Review A, 2003, 68, .	1.0	8
261	Multiple adsorption of NO on cobalt-exchanged chabazite, mordenite, and ferrierite zeolites: A periodic density functional theory study. Journal of Chemical Physics, 2009, 131, 054101.	1.2	8
262	Methyl and Pentyl Chloride in a Microhydrated Environment and at the Liquid Waterâ^'Vapor Interface: A Theoretical Study. Journal of Physical Chemistry B, 2011, 115, 1807-1816.	1.2	8
263	OÂ+ÂC2H4 potential energy surface: excited states and biradicals at the multireference level. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	8
264	Cycloaddition of Strained Cyclic Alkenes and <i>Ortho</i> -Quinones: A Distortion/Interaction Analysis. Journal of Organic Chemistry, 2020, 85, 13557-13566.	1.7	8
265	Pathways to fluorescence <i>via</i> restriction of intramolecular motion in substituted tetraphenylethylenes. Physical Chemistry Chemical Physics, 2022, 24, 1722-1735.	1.3	8
266	Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond. Challenges and Advances in Computational Chemistry and Physics, 2010, , 77-106.	0.6	7
267	A Multireference Configuration Interaction Study of the Photodynamics of Nitroethylene. Journal of Physical Chemistry A, 2014, 118, 12011-12020.	1.1	7
268	Characterization of Charge Transfer in Excited States of Extended Clusters of π-Stacked Donor and Acceptor Complexes in Lock-Arm Supramolecular Ordering. Journal of Physical Chemistry A, 2019, 123, 4532-4542.	1.1	7
269	Quantum chemical evidence for the origin of the red/blue colors of <i>Hydrangea macrophylla</i> sepals. New Journal of Chemistry, 2019, 43, 7532-7540.	1.4	7
270	Thermochemical and Kinetics of Hydrazine Dehydrogenation by an Oxygen Atom in Hydrazine-Rich Systems: A Dimer Model. Journal of Physical Chemistry A, 2015, 119, 12607-12614.	1.1	7

#	Article	IF	CITATIONS
271	Isomerization of cyanoborane anion. Chemical Physics Letters, 1995, 241, 261-266.	1.2	6
272	Photodissociation Pathways of Acetone Upon Excitation Into the 3s Rydberg State: Adiabatic Versus Diabatic Mechanism. Collection of Czechoslovak Chemical Communications, 2008, 73, 1475-1494.	1.0	6
273	Nonadiabatic dynamics study of methaniminium with ORMAS: Challenges of incomplete active spaces in dynamics simulations. Computational and Theoretical Chemistry, 2014, 1040-1041, 158-166.	1.1	6
274	Interplay between Aromaticity and Radicaloid Character in Nitrogen-Doped Oligoacenes Revealed by High-Level Multireference Methods. Journal of Physical Chemistry A, 2018, 122, 9464-9473.	1.1	6
275	A massively parallel multireference configuration interaction program: The parallel COLUMBUS program. , 1997, 18, 430.		6
276	Bk approximation applied to the multireference configuration interaction method. International Journal of Quantum Chemistry, 2000, 76, 185-196.	1.0	5
277	High-Level Quantum Chemical Methods for the Study of Photochemical Processes. Lecture Notes in Computer Science, 2005, , 1004-1011.	1.0	5
278	On the optical properties of fluoranthenopyracylene ladder type molecule series. Synthetic Metals, 2007, 157, 214-221.	2.1	5
279	OÂ+ÂC2H4 potential energy surface: lowest-lying singlet at the multireference level. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	5
280	The effect of dimerization on the excited state behavior of methylated xanthine derivatives: a computational study. Photochemical and Photobiological Sciences, 2013, 12, 1496.	1.6	5
281	The crucial role of a spacer material on the efficiency of charge transfer processes in organic donor–acceptor junction solar cells. Nanoscale, 2018, 10, 451-459.	2.8	5
282	Theoretical analysis of the stabilization of graphene nanosheets by means of strongly polarized pyrene derivatives. Chemical Physics, 2019, 527, 110468.	0.9	5
283	Effects on the aromaticity and on the biradicaloid nature of acenes by the inclusion of a cyclobutadiene linkage. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	5
284	Benchmark ab initio calculations on intermolecular structures and the exciton character of poly(p-phenylenevinylene) dimers. Journal of Chemical Physics, 2020, 152, 044306.	1.2	5
285	The C2H3+ cation and its interaction with HF. Theoretica Chimica Acta, 1979, 54, 23-34.	0.9	4
286	Parallel computing in quantum chemistry — message passing and beyond for a general ab initio program system. , 1994, , 203-209.		4
287	Experimental and Theoretical Study of Model Ladder Fluoranthenopyracylene with Two-Dimensional Ĩ€-Conjugation upon Charging:  Structure and Optical Properties. Journal of Physical Chemistry C, 2008, 112, 3949-3958.	1.5	4
288	Nonadiabatic Excited-State Dynamics of Aromatic Heterocycles: Toward the Time-Resolved Simulation of Nucleobases. Challenges and Advances in Computational Chemistry and Physics, 2008, , 209-235.	0.6	4

#	Article	IF	CITATIONS
289	Supporting Molecular Modeling Workflows within a Grid Services Cloud. Lecture Notes in Computer Science, 2010, , 13-28.	1.0	4
290	Sorption of Selected Aromatic Substances—Application of Kinetic Concepts and Quantum Mechanical Modeling. Water, Air, and Soil Pollution, 2011, 215, 449-464.	1.1	4
291	The Antiferromagnetic Spin Coupling in Nonâ€Kekulé Acenes—Impressive Polyradical Character Revealed by Highâ€Level Multireference Methods. ChemPhysChem, 2016, 17, 2013-2021.	1.0	4
292	Highâ€level <i>Ab Initio</i> Absorption Spectra Simulations of Neutral, Anionic and Neutral+ Chromophore of Green Fluorescence Protein Chromophore Models in Gas Phase and Solution. Photochemistry and Photobiology, 2017, 93, 1356-1367.	1.3	4
293	Molecular Models of Cation and Water Molecule Bridges in Humic Substances. , 2014, , 107-115.		4
294	Ab initio studies on hydrogen-bonded trimers: structure and vibrational spectra of HCN(HF)2 and (HCN)2HF. Computational and Theoretical Chemistry, 1991, 227, 337-350.	1.5	3
295	Model Systems for Dynamics of π-Conjugated Biomolecules in Excited States. , 2012, , 1175-1213.		3
296	<scp>L</scp> agrange function method for energy optimization directly in the space of natural orbitals. International Journal of Quantum Chemistry, 2017, 117, e25376.	1.0	3
297	Microhydration of Polymer Electrolyte Membranes: A Comparison of Hydrogen-Bonding Networks and Spectral Properties of Nafion and Bis[(perfluoroalkyl)sulfonyl] Imide. Journal of Physical Chemistry B, 2019, 123, 9899-9911.	1.2	3
298	Conical intersections and the weak fluorescence of betalains. Photochemical and Photobiological Sciences, 2019, 18, 1972-1981.	1.6	3
299	A general new method for calculating the molecular nonpolar surface for analysis of LC-MS data. International Journal of Mass Spectrometry, 2021, 461, 116495.	0.7	3
300	Spin-density calculation via the graphical unitary group approach. Molecular Physics, 2023, 121, .	0.8	3
301	Parallel computing in quantum chemistry — Message passing and beyond for a general ab initio program system. Future Generation Computer Systems, 1995, 11, 445-450.	4.9	2
302	<i>Cis-trans</i> photoisomerization of azobenzene upon excitation to the S ₁ state: an ab initio molecular dynamics and QM/MM study. Proceedings of SPIE, 2012, , .	0.8	2
303	Electronic structure theory gives insights into the higher efficiency of the PTB electron-donor polymers for organic photovoltaics in comparison with prototypical P3HT. Journal of Chemical Physics, 2018, 149, 184905.	1.2	2
304	Reaction mechanism for fluorination reactions with hydroxylated alumina sites: Pathways promoting aluminum combustion. Journal of Chemical Physics, 2021, 154, 104308.	1.2	2
305	Ab initio calculation of the excited states of nitropyrenes. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	2
306	Nonadiabatic Ab Initio Surface-Hopping Dynamics Calculation in a Grid Environment – First Experiences. , 2007, , 281-294.		2

#	Article	IF	CITATIONS
307	Model Systems for Dynamics of π-Conjugated Biomolecules in Excited States. , 2017, , 1697-1739.		1
308	Hydrogen Bonds And Solvent Effects In Soil Processes: A Theoretical View. Challenges and Advances in Computational Chemistry and Physics, 2008, , 321-347.	0.6	1
309	Ab initio Study of the Potential Curves for CO (X1Îἑ+), CH (X2Î) and OH (X2Î). Collection of Czechoslovak Chemical Communications, 1994, 59, 1241-1250.	1.0	1
310	Electronically excited states and photodynamics: a continuing challenge. , 2012, , 147-160.		1
311	Electronic Excitations in a Ladder Type Fluoranthenopyracylene in its Neutral and Charged States: A Theoretical and Experimental Study. Zeitschrift Fur Physikalische Chemie, 2007, 221, 911-928.	1.4	0
312	Quantenchemische Untersuchungen an einfachen siliciumanalogen Kohlenwasserstoffen; Disilen. Zeitschrift Für Chemie, 1984, 24, 155-156.	0.0	0
313	Solvent effect on Al(III) hydrolysis constants from density functional theory. Molecular Physics, 2019, 117, 1507-1518.	0.8	0
314	Memorial Viewpoint for William L. Hase. Journal of Physical Chemistry A, 2020, 124, 4183-4184.	1.1	0
315	Model Systems for Dynamics of π-Conjugated Biomolecules in Excited States. , 2016, , 1-43.		Ο