Johannes L Bos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5103479/publications.pdf Version: 2024-02-01

IOHANNES I ROS

#	Article	IF	CITATIONS
1	GEFs and GAPs: Critical Elements in the Control of Small G Proteins. Cell, 2007, 129, 865-877.	28.9	1,546
2	Rap1 signalling: adhering to new models. Nature Reviews Molecular Cell Biology, 2001, 2, 369-377.	37.0	574
3	Epac proteins: multi-purpose cAMP targets. Trends in Biochemical Sciences, 2006, 31, 680-686.	7.5	487
4	Epac: a new cAMP target and new avenues in cAMP research. Nature Reviews Molecular Cell Biology, 2003, 4, 733-738.	37.0	444
5	Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. ELife, 2016, 5, .	6.0	191
6	Cell–cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 790-796.	2.6	134
7	Evolution of the TOR Pathway. Journal of Molecular Evolution, 2011, 73, 209-220.	1.8	118
8	8â€pCPTâ€2â€2â€Oâ€Me AMPâ€AM: An Improved Epacâ€Selective cAMP Analogue. ChemBioChem, 2008, 9	, 2 2.5 2-20	54106

9	Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nature Cell Biology, 2021, 23, 377-390.	10.3	71
10	Structure-Guided Design of Selective Epac1 and Epac2 Agonists. PLoS Biology, 2015, 13, e1002038.	5.6	68
11	DEP domains: structurally similar but functionally different. Nature Reviews Molecular Cell Biology, 2014, 15, 357-362.	37.0	63
12	The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cellular Signalling, 2007, 19, 1249-1257.	3.6	62
13	Rap1 signaling in endothelial barrier control. Cell Adhesion and Migration, 2014, 8, 100-107.	2.7	61
14	cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cellular Signalling, 2008, 20, 1104-1116.	3.6	48
15	Control of Epithelial Cell Migration and Invasion by the IKKβ- and CK1α-Mediated Degradation of RAPGEF2. Developmental Cell, 2013, 27, 574-585.	7.0	30
16	Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi. Cellular Signalling, 2009, 21, 1579-1585.	3.6	21
17	CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget, 2019, 10, 1440-1457.	1.8	19
18	Low-density lipoprotein activates the small GTPases Rap1 and Ral in human platelets. Biochemical Journal, 2000, 349, 231-238.	3.7	18

2

JOHANNES L BOS

#	Article	IF	CITATIONS
19	ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization. Journal of Cell Biology, 2015, 210, 1055-1063.	5.2	17
20	Multiple Rap1 effectors control Epac1-mediated tightening of endothelial junctions. Small GTPases, 2020, 11, 346-353.	1.6	17
21	From Ras to Rap and Back, a Journey of 35 Years. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031468.	6.2	16
22	The PDZ Domain of the Guanine Nucleotide Exchange Factor PDZGEF Directs Binding to Phosphatidic Acid during Brush Border Formation. PLoS ONE, 2014, 9, e98253.	2.5	12
23	A Two-Tiered Mechanism Enables Localized Cdc42 Signaling during Enterocyte Polarization. Molecular and Cellular Biology, 2017, 37, .	2.3	11
24	Mechanisms of Isoform Specific Rap2 Signaling during Enterocytic Brush Border Formation. PLoS ONE, 2014, 9, e106687.	2.5	10
25	Semaphorin Signaling Meets Rap. Science Signaling, 2012, 5, pe6.	3.6	9
26	Quantitative global phosphoproteomics of human umbilical vein endothelial cells after activation of the Rap signaling pathway. Molecular BioSystems, 2013, 9, 732.	2.9	8
27	The Phosphatase PTPL1 Is Required for PTEN-Mediated Regulation of Apical Membrane Size. Molecular and Cellular Biology, 2018, 38, .	2.3	7
28	A Tuba/Cdc42/Par6A complex is required to ensure singularity in apical domain formation during enterocyte polarization. PLoS ONE, 2018, 13, e0207159.	2.5	5
29	Ras Association-Domain Dimers Bring Proteins Together. Structure, 2016, 24, 2039-2040.	3.3	1
30	Rap1B speeds up angiogenesis. Blood, 2008, 111, 2500-2501.	1.4	0