Miguel Gama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5102942/publications.pdf Version: 2024-02-01

MICHEL CAMA

#	Article	IF	CITATIONS
1	Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules, 2022, 23, 1169-1182.	5.4	3
2	ldentification of the Bacterial Pathogens in Children with Otitis Media: A Study in the Northwestern Portuguese District of Braga. Microorganisms, 2022, 10, 54.	3.6	7
3	Hyaluronic acid–amphotericin B nanocomplexes: a promising anti-leishmanial drug delivery system. Biomaterials Science, 2022, 10, 1952-1967.	5.4	1
4	Hemostatic Dressings Made of Oxidized Bacterial Nanocellulose Membranes. Polysaccharides, 2021, 2, 80-99.	4.8	11
5	Application of Bacterial Cellulose in the Textile and Shoe Industry: Development of Biocomposites. Polysaccharides, 2021, 2, 566-581.	4.8	20
6	Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Materials Science and Engineering C, 2020, 108, 110416.	7.3	17
7	A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Carbohydrate Polymers, 2020, 230, 115657.	10.2	39
8	Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. International Journal of Molecular Sciences, 2020, 21, 8352.	4.1	14
9	Nanocellulose Bio-Based Composites for Food Packaging. Nanomaterials, 2020, 10, 2041.	4.1	104
10	Dry Bacterial Cellulose and Carboxymethyl Cellulose formulations with interfacial-active performance: processing conditions and redispersion. Cellulose, 2020, 27, 6505-6520.	4.9	16
11	Study and valorisation of wastewaters generated in the production of bacterial nanocellulose. Biodegradation, 2020, 31, 47-56.	3.0	2
12	Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis. International Journal of Biological Macromolecules, 2020, 153, 276-288.	7.5	12
13	Incorporating graphene oxide into biomimetic nano-microfibrous cellulose scaffolds for enhanced breast cancer cell behavior. Cellulose, 2020, 27, 4471-4485.	4.9	12
14	Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. Cellulose, 2020, 27, 10733-10746.	4.9	33
15	Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose, 2020, 27, 2775-2784.	4.9	48
16	Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites. Applied Microbiology and Biotechnology, 2019, 103, 9143-9154.	3.6	12
17	Fabrication of a novel hierarchical fibrous scaffold for breast cancer cell culture. Polymer Testing, 2019, 80, 106107.	4.8	15
18	Biofabrication of a novel bacteria/bacterial cellulose composite for improved adsorption capacity. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105560.	7.6	26

#	Article	IF	CITATIONS
19	Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology, 2019, 12, 650-661.	4.2	78
20	Stable microfluidized bacterial cellulose suspension. Cellulose, 2019, 26, 5851-5864.	4.9	19
21	Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice. Toxicological Research, 2019, 35, 45-63.	2.1	19
22	Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 2019, 12, 633-649.	4.2	83
23	<i>In vivo</i> systemic toxicity assessment of an oxidized dextrinâ€based hydrogel and its effectiveness as a carrier and stabilizer of granular synthetic bone substitutes. Journal of Biomedical Materials Research - Part A, 2019, 107, 1678-1689.	4.0	10
24	Bacterial Cellulose and Emulsified AESO Biocomposites as an Ecological Alternative to Leather. Nanomaterials, 2019, 9, 1710.	4.1	11
25	In vitro genotoxicity assessment of an oxidized dextrinâ€based hydrogel for biomedical applications. Journal of Applied Toxicology, 2019, 39, 639-649.	2.8	7
26	Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnology, 2019, 49, 19-27.	4.4	57
27	Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose, 2018, 25, 2505-2514.	4.9	14
28	Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Materials Today, 2018, 21, 720-748.	14.2	625
29	Effects of gamma irradiation and periodate oxidation on the structure of dextrin assessed by mass spectrometry. European Polymer Journal, 2018, 103, 158-169.	5.4	16
30	Enhanced UV Flexible Photodetectors and Photocatalysts Based on TiO2 Nanoplatforms. Topics in Catalysis, 2018, 61, 1591-1606.	2.8	24
31	Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 2018, 25, 6011-6029.	4.9	16
32	Bacterial NanoCellulose: what future?. BioImpacts, 2018, 8, 1-3.	1.5	53
33	Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresource Technology, 2018, 267, 347-355.	9.6	29
34	Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. Biotechnology for Biofuels, 2018, 11, 111.	6.2	29
35	Process Modelling and Techno-Economic Evaluation of an Industrial Airlift Bacterial Cellulose Fermentation Process. , 2018, , 1-16.		3
36	Targetability of hyaluronic acid nanogel to cancer cells: In vitro and in vivo studies. European Journal of Pharmaceutical Sciences, 2017, 104, 102-113.	4.0	35

IF # ARTICLE CITATIONS A Review on the toxicology and dietetic role of bacterial cellulose. Toxicology Reports, 2017, 4, 543-553. Injectable hydrogels as a delivery system for bone regeneration., 2017, 241-271. 38 4 Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and 10.2 218 morphological features. Carbohydrate Polymers, 2017, 155, 425-431. Celluloses as Food Ingredients/Additives: IsÂThere a Room for BNC?., 2016, , 123-133. 40 16 European Regulatory Framework on Novel Foods and Novel Food Additives., 2016, , 135-144. 42 Optoelectronic Devices from Bacterial NanoCellulose., 2016, , 179-197. 17 Mechanical fatigue performance of PCLâ€ehondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. Journal of Biomedical Materials Research - Part B Applied 3.4 Biomaterials, 2016, 104, 330-338. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnology Advances, 2016, 34, 11.7 44 66 924-940. Potential of mannan or dextrin nanogels as vaccine carrier/adjuvant systems. Journal of Bioactive and 2.1 Compatible Polymers, 2016, 31, 453-466. Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial 46 3.7 14 cellulose films. Journal of Materials Science, 2016, 51, 9562-9572. Biocompatibility of a Self-Assembled Crosslinkable Hyaluronic Acid Nanogel. Macromolecular 4.1 Bioscience, 2016, 16, 1610-1620. A Novel Small $\hat{a}\in C$ aliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization, and 48 4.1 37 Preliminary In Vivo Testing. Macromolecular Bioscience, 2016, 16, 139-150. Process Modeling and Techno-Economic Evaluation of an Industrial Bacterial NanoCellulose Fermentation Process., 2016, , 199-214. Taxonomic Review and Microbial Ecology inÂBacterial NanoCellulose Fermentation., 2016, , 1-17. 50 6 Inflammatory response to dextrin-based hydrogel associated with human mesenchymal stem cells, urinary bladder matrix and Bonelike [®] granules in rat subcutaneous implants. Biomédical Materials (Bristol), 2016, 11, 065004. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling. 52 9.6 36 Bioresource Technology, 2016, 216, 637-644. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. 80 Journal of Controlled Release, 2016, 235, 112-124. Processing and size range separation of pristine and magnetic poly(1-lactic acid) based microspheres 54 9.4 23 for biomedical applications. Journal of Colloid and Interface Science, 2016, 476, 79-86.

#	Article	IF	CITATIONS
55	In Vivo Imaging of Glycol Chitosanâ€Based Nanogel Biodistribution. Macromolecular Bioscience, 2016, 16, 432-440.	4.1	16
56	Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids and Surfaces B: Biointerfaces, 2016, 139, 1-9.	5.0	39
57	Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 430-436.	5.0	126
58	Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing, 2015, 44, 234-241.	4.8	99
59	Modification of paper properties using carbohydrate-binding module 3 from the Clostridium thermocellum CipA scaffolding protein produced in Pichia pastoris: elucidation of the glycosylation effect. Cellulose, 2015, 22, 2755-2765.	4.9	12
60	Recombinant CBM-fusion technology — Applications overview. Biotechnology Advances, 2015, 33, 358-369.	11.7	110
61	Surface roughness dependent osteoblast and fibroblast response on poly(<scp>l</scp> -lactide) films and electrospun membranes. Journal of Biomedical Materials Research - Part A, 2015, 103, 2260-2268.	4.0	50
62	Dextrin-Based Nanomagnetogel: In Vivo Biodistribution and Stability. Bioconjugate Chemistry, 2015, 26, 699-706.	3.6	9
63	Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a carbopol gel. Acta Biomaterialia, 2015, 26, 249-262.	8.3	63
64	siRNA Inhibition of Endocytic Pathways to Characterize the Cellular Uptake Mechanisms of Folate-Functionalized Glycol Chitosan Nanogels. Molecular Pharmaceutics, 2015, 12, 1970-1979.	4.6	14
65	Cellulase recycling in biorefineries—is it possible?. Applied Microbiology and Biotechnology, 2015, 99, 4131-4143.	3.6	64
66	Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid–liquid partition and potential of enzyme recycling by alkaline washing. Enzyme and Microbial Technology, 2015, 79-80, 70-77.	3.2	91
67	Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale. Applied Energy, 2015, 159, 188-195.	10.1	30
68	Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicology in Vitro, 2015, 29, 638-646.	2.4	47
69	Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 2015, 99, 1181-1190.	3.6	130
70	Endogenous cathelicidin production limits inflammation and protective immunity to Mycobacterium avium in mice. Immunity, Inflammation and Disease, 2014, 2, 1-12.	2.7	18
71	Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw. Bioresource Technology, 2014, 156, 163-169.	9.6	38
72	A Novel Crosslinked Hyaluronic Acid Nanogel for Drug Delivery. Macromolecular Bioscience, 2014, 14, 1556-1568.	4.1	44

#	Article	IF	CITATIONS
73	Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels. Carbohydrate Polymers, 2014, 114, 458-466.	10.2	33
74	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Advances, 2013, 3, 17938.	3.6	128
75	Polymeric nanogels as vaccine delivery systems. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 159-173.	3.3	104
76	Recombinant expression and purification of the antimicrobial peptide magaininâ€2. Biotechnology Progress, 2013, 29, 17-22.	2.6	37
77	Studies on the biocompatibility of bacterial cellulose. Journal of Bioactive and Compatible Polymers, 2013, 28, 97-112.	2.1	59
78	Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids and Surfaces B: Biointerfaces, 2013, 111, 493-502.	5.0	82
79	New dextrin nanomagnetogels as contrast agents for magnetic resonance imaging. Journal of Materials Chemistry B, 2013, 1, 5853.	5.8	17
80	Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids and Surfaces B: Biointerfaces, 2013, 104, 229-238.	5.0	136
81	Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1368-1377.	3.5	51
82	Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite. Materials, 2013, 6, 1956-1966.	2.9	40
83	Glycol Chitosanâ€ <scp>B</scp> ased Nanogel as a Potential Targetable Carrier for siRNA. Macromolecular Bioscience, 2013, 13, 1369-1378.	4.1	33
84	Self-Assembled Mannan Nanogel: Cytocompatibility and Cell Localization. Journal of Biomedical Nanotechnology, 2012, 8, 473-481.	1.1	5
85	Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses. Biotechnology Letters, 2012, 34, 1475-1482.	2.2	32
86	Development of a Hybrid Dextrin Hydrogel Encapsulating Dextrin Nanogel As Protein Delivery System. Biomacromolecules, 2012, 13, 517-527.	5.4	86
87	Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1043-1051.	2.4	27
88	Bacterial Cellulose: Long-Term Biocompatibility Studies. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1339-1354.	3.5	113
89	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012, 2, 11504.	3.6	106
90	Antiproliferative Activity of Fucan Nanogel. Marine Drugs, 2012, 10, 2002-2022.	4.6	15

#	Article	IF	CITATIONS
91	Unraveling the Uptake Mechanisms of Mannan Nanogel in Boneâ€Marrowâ€Derived Macrophages. Macromolecular Bioscience, 2012, 12, 1172-1180.	4.1	4
92	Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnology Progress, 2012, 28, 526-532.	2.6	67
93	Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresource Technology, 2012, 110, 526-533.	9.6	55
94	Wound healing activity of the human antimicrobial peptide LL37. Peptides, 2011, 32, 1469-1476.	2.4	203
95	Friction and wear behaviour of bacterial cellulose against articular cartilage. Wear, 2011, 271, 2328-2333.	3.1	31
96	Studies on the hemocompatibility of bacterial cellulose. Journal of Biomedical Materials Research - Part A, 2011, 98A, 554-566.	4.0	106
97	Selfâ€assembled dextrin nanogel as protein carrier: Controlled release and biological activity of ILâ€10. Biotechnology and Bioengineering, 2011, 108, 1977-1986.	3.3	22
98	Supramolecular assembled nanogel made of mannan. Journal of Colloid and Interface Science, 2011, 361, 97-108.	9.4	27
99	Synthesis and Characterization of Self-Assembled Nanogels Made of Pullulan. Materials, 2011, 4, 601-620.	2.9	20
100	Characterization of dextrinâ€based hydrogels: Rheology, biocompatibility, and degradation. Journal of Biomedical Materials Research - Part A, 2010, 93A, 389-399.	4.0	12
101	Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications. Materials, 2010, 3, 1420-1460.	2.9	152
102	Improving the affinity of fibroblasts for bacterial cellulose using carbohydrateâ€binding modules fused to RGD. Journal of Biomedical Materials Research - Part A, 2010, 92A, 9-17.	4.0	75
103	Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system. International Journal of Pharmaceutics, 2010, 400, 234-242.	5.2	29
104	Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomaterialia, 2010, 6, 4034-4041.	8.3	134
105	Dextrin nanoparticles: Studies on the interaction with murine macrophages and blood clearance. Colloids and Surfaces B: Biointerfaces, 2010, 75, 483-489.	5.0	47
106	Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydrate Polymers, 2010, 82, 692-698.	10.2	167
107	<i>In Vivo</i> Biocompatibility and Biodegradability of Dextrin-based Hydrogels. Journal of Bioactive and Compatible Polymers, 2010, 25, 141-153.	2.1	23
108	Self-Assembled Nanogel Made of Mannan: Synthesis and Characterization. Langmuir, 2010, 26, 11413-11420.	3.5	26

#	Article	IF	CITATIONS
109	Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expression and Purification, 2010, 71, 1-7.	1.3	39
110	Escherichia coli expression, refolding and characterization of human laforin. Protein Expression and Purification, 2010, 71, 195-199.	1.3	8
111	Expression of the functional carbohydrate-binding module (CBM) of human laforin. Protein Expression and Purification, 2010, 74, 169-174.	1.3	6
112	Studies on the biodistribution of dextrin nanoparticles. Nanotechnology, 2010, 21, 295103.	2.6	9
113	Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres. Cellulose, 2009, 16, 817-824.	4.9	11
114	New dextrin-vinylacrylate hydrogel: Studies on protein diffusion and release. Carbohydrate Polymers, 2009, 75, 322-327.	10.2	16
115	BC nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicology Letters, 2009, 189, 235-241.	0.8	123
116	The Inhibitory Effect of an RGD-Human Chitin-Binding Domain Fusion Protein on the Adhesion of Fibroblasts to Reacetylated Chitosan Films. Molecular Biotechnology, 2008, 40, 269-279.	2.4	5
117	Quantification of the CBD-FITC conjugates surface coating on cellulose fibres. BMC Biotechnology, 2008, 8, 1.	3.3	90
118	Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence. BMC Biotechnology, 2008, 8, 78.	3.3	12
119	Characterization of dextrin hydrogels by FTIR spectroscopy and solid state NMR spectroscopy. European Polymer Journal, 2008, 44, 2318-2329.	5.4	37
120	Self-aggregation of hydrophobically modified dextrin and their interaction with surfactant. Thermochimica Acta, 2008, 467, 54-62.	2.7	20
121	Characterization of the self-assembly process of hydrophobically modified dextrin. European Polymer Journal, 2008, 44, 3529-3534.	5.4	33
122	Escherichia coli expression and purification of four antimicrobial peptides fused to a family 3 carbohydrate-binding module (CBM) from Clostridium thermocellum. Protein Expression and Purification, 2008, 59, 161-168.	1.3	30
123	Textile depilling: Superior finishing using cellulose-binding domains with residual enzymatic activity. Biocatalysis and Biotransformation, 2007, 25, 35-42.	2.0	5
124	Self-Assembled Nanoparticles of Dextrin Substituted with Hexadecanethiol. Biomacromolecules, 2007, 8, 392-398.	5.4	61
125	Enzymatic depolymerisation of cellulose. Carbohydrate Polymers, 2007, 68, 101-108.	10.2	49
126	Production and characterization of a new dextrin based hydrogel. European Polymer Journal, 2007, 43, 3050-3059.	5.4	79

#	Article	IF	CITATIONS
127	Development of a Method Using Image Analysis for the Measurement of Cellulose-Binding Domains Adsorbed onto Cellulose Fibers. Biotechnology Progress, 2007, 23, 1492-1497.	2.6	14
128	NMR structural elucidation of the arabinan from Prunus dulcis immunobiological active pectic polysaccharides. Carbohydrate Polymers, 2006, 66, 27-33.	10.2	77
129	Factors influencing MOW deinking: Laboratory scale studies. Enzyme and Microbial Technology, 2006, 38, 81-87.	3.2	26
130	Large-scale production of cellulose-binding domains. Adsorption studies using CBD-FITC conjugates. Cellulose, 2006, 13, 557-569.	4.9	24
131	Novel hydrogel obtained by chitosan and dextrin-VA co-polymerization. Biotechnology Letters, 2006, 28, 1279-1284.	2.2	10
132	Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology, 2004, 111, 334-342.	4.4	69
133	Physicochemical, functional and structural characterization of fibre from defattedRosa rubiginosa andGevuina avellana seeds. Journal of the Science of Food and Agriculture, 2004, 84, 1951-1959.	3.5	6
134	Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids and Surfaces B: Biointerfaces, 2004, 35, 125-135.	5.0	44
135	Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds. Carbohydrate Research, 2004, 339, 2555-2566.	2.3	58
136	Studies on the Cellulose-Binding Domains Adsorption to Cellulose. Langmuir, 2004, 20, 1409-1413.	3.5	34
137	Enzymatic versus chemical deinking of non-impact ink printed paper. Journal of Biotechnology, 2004, 108, 79-89.	3.8	75
138	Characterisation of Chilean hazelnut (Gevuina avellana) tissues: light microscopy and cell wall polysaccharides. Journal of the Science of Food and Agriculture, 2003, 83, 158-165.	3.5	9
139	The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei. Enzyme and Microbial Technology, 2003, 32, 35-40.	3.2	35
140	Characterisation and application of glycanases secreted by Aspergillus terreus CCMI 498 and Trichoderma viride CCMI 84 for enzymatic deinking of mixed office wastepaper. Journal of Biotechnology, 2003, 100, 209-219.	3.8	40
141	In Vitro Assessment of the Enzymatic Degradation of Several Starch Based Biomaterials. Biomacromolecules, 2003, 4, 1703-1712.	5.4	160
142	Enzymatic Modification of Paper Fibres. Biocatalysis and Biotransformation, 2002, 20, 353-361.	2.0	14
143	Studies on the properties of Celluclast/Eudragit L-100 conjugate. Journal of Biotechnology, 2002, 99, 121-131.	3.8	55
144	Enzymatic upgrade of old paperboard containers. Enzyme and Microbial Technology, 2001, 29, 274-279.	3.2	52

#	Article	IF	CITATIONS
145	Characterisation of Rosa Mosqueta seeds: cell wall polysaccharide composition and light microscopy observations. Journal of the Science of Food and Agriculture, 2000, 80, 1859-1865.	3.5	12
146	Title is missing!. Biotechnology Letters, 2000, 22, 703-707.	2.2	19
147	Selective Enzyme-Mediated Extraction of Capsaicinoids and Carotenoids from Chili Guajillo Puya (CapsicumannuumL.) Using Ethanol as Solvent. Journal of Agricultural and Food Chemistry, 2000, 48, 3063-3067.	5.2	92
148	Effect of cellulase adsorption on the surface and interfacial properties of cellulose. Cellulose, 1999, 6, 265-282.	4.9	17
149	Exo- and endo-glucanolytic activity of cellulases purified from Trichoderma reesei. Biotechnology Letters, 1998, 12, 677-681.	0.5	9
150	Comparative study of cellulose fragmentation by enzymes and ultrasound. Enzyme and Microbial Technology, 1997, 20, 12-17.	3.2	20
151	New methodology for the characterization of endoglucanase activity and its application on the Trichoderma longibrachiatum cellulolytic complex. Enzyme and Microbial Technology, 1993, 15, 57-61.	3.2	13
152	Direct determination of endoglucanase activity on cellulose insoluble fibres. Biotechnology Letters, 1991, 5, 377.	0.5	3
153	Partial characterization of cell wall from a flocculent strain ofKluyveromyces marxianus. Biotechnology Letters, 1989, 11, 579-582.	2.2	15