
Sybille Krauß

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5102446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FOXO1 controls protein synthesis and transcript abundance of mutant polyglutamine proteins, preventing protein aggregation. Human Molecular Genetics, 2021, 30, 996-1005.	2.9	2
2	Role and Perspective of Molecular Simulation-Based Investigation of RNA–Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules, 2021, 26, 3384.	3.8	3
3	Huntingtin and Its Role in Mechanisms of RNA-Mediated Toxicity. Toxins, 2021, 13, 487.	3.4	12
4	The MID1 Protein: A Promising Therapeutic Target in Huntington's Disease. Frontiers in Genetics, 2021, 12, 761714.	2.3	7
5	Huntington's Disease and Neurodegeneration. , 2021, , 1-23.		0
6	Effects of heterochronic, non-myeloablative bone marrow transplantation on age-related behavioural changes in mice. Mechanisms of Ageing and Development, 2020, 191, 111327.	4.6	1
7	In vivo targeting of miRâ€223 in experimental eosinophilic oesophagitis. Clinical and Translational Immunology, 2020, 9, e1210.	3.8	3
8	The Role of MicroRNAs in Spinocerebellar Ataxia Type 3. Journal of Molecular Biology, 2019, 431, 1729-1742.	4.2	9
9	Inhibition of Stat3â€mediated astrogliosis ameliorates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2019, 11, .	6.9	186
10	Deregulated Splicing Is a Major Mechanism of RNA-Induced Toxicity in Huntington's Disease. Journal of Molecular Biology, 2019, 431, 1869-1877.	4.2	57
11	Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures. Neuroscience Letters, 2018, 673, 44-50.	2.1	9
12	Reducing Mutant Huntingtin Protein Expression in Living Cells by a Newly Identified RNA CAG Binder. ACS Chemical Neuroscience, 2018, 9, 1399-1408.	3.5	29
13	Inhibition of the MID1 protein complex: a novel approach targeting APP protein synthesis. Cell Death Discovery, 2018, 4, 4.	4.7	33
14	Upregulation of miR-25 and miR-181 Family Members Correlates with Reduced Expression of ATXN3 in Lymphocytes from SCA3 Patients. MicroRNA (Shariqah, United Arab Emirates), 2018, 8, 76-85.	1.2	11
15	Upregulation of miR-370 and miR-543 is associated with reduced expression of heat shock protein 40 in spinocerebellar ataxia type 3. PLoS ONE, 2018, 13, e0201794.	2.5	19
16	MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression. PLoS ONE, 2018, 13, e0190437.	2.5	20
17	Metformin reverses early cortical network dysfunction and behavior changes in Huntington's disease. ELife, 2018, 7, .	6.0	64
18	Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Scientific Reports, 2017, 7, 13753.	3.3	67

Sybille Krauß

#	Article	IF	CITATIONS
19	A validated antibody panel for the characterization of tau post-translational modifications. Molecular Neurodegeneration, 2017, 12, 87.	10.8	61
20	The MID1 protein is a central player during development and in disease. Frontiers in Bioscience - Landmark, 2016, 21, 664-682.	3.0	30
21	Regulation of mRNA Translation by MID1: A Common Mechanism of Expanded CAG Repeat RNAs. Frontiers in Cellular Neuroscience, 2016, 10, 226.	3.7	22
22	Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathologica, 2015, 130, 619-631.	7.7	58
23	The Anti-Diabetic Drug Metformin Reduces BACE1 Protein Level by Interfering with the MID1 Complex. PLoS ONE, 2014, 9, e102420.	2.5	74
24	Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death and Disease, 2014, 5, e1209-e1209.	6.3	116
25	The E3 Ubiquitin Ligase MID1 Catalyzes Ubiquitination and Cleavage of Fu. Journal of Biological Chemistry, 2014, 289, 31805-31817.	3.4	23
26	A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling. Molecular Cancer, 2014, 13, 146.	19.2	34
27	Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death and Disease, 2013, 4, e752-e752.	6.3	129
28	Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1–PP2A protein complex. Nature Communications, 2013, 4, 1511.	12.8	84
29	Prions <i>Ex Vivo</i> : What Cell Culture Models Tell Us about Infectious Proteins. International Journal of Cell Biology, 2013, 2013, 1-14.	2.5	16
30	FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Human Molecular Genetics, 2011, 20, 2928-2941.	2.9	87
31	Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8680-8685.	7.1	82
32	Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21830-21835.	7.1	360
33	Point Mutations in GLI3 Lead to Misregulation of its Subcellular Localization. PLoS ONE, 2009, 4, e7471.	2.5	23
34	PPARδIs a Type 1 IFN Target Gene and Inhibits Apoptosis in T Cells. Journal of Investigative Dermatology, 2008, 128, 1940-1949.	0.7	25
35	Protein Phosphatase 2A and Rapamycin Regulate the Nuclear Localization and Activity of the Transcription Factor GLI3. Cancer Research, 2008, 68, 4658-4665.	0.9	50
36	Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing. Human Genetics, 2004, 114, 541-552.	3.8	22

#	Article	IF	CITATIONS
37	MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nature Genetics, 2001, 29, 287-294.	21.4	264