Samrat Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5102063/publications.pdf

Version: 2024-02-01

70 1,346 22 34 papers citations h-index g-index

72 72 72 1111
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. Journal of Materials Science, 2007, 42, 7566-7574.	3.7	103
2	Microstructural, magnetic, and hyperfine characterizations of Cuâ€doped cobalt ferrite nanoparticles. Journal of the American Ceramic Society, 2019, 102, 7509-7520.	3.8	76
3	Study of nonlinear optical properties of organic dye by Z-scan technique using He–Ne laser. Journal of Materials Science: Materials in Electronics, 2014, 25, 1410-1415.	2.2	62
4	Solubility Enhancement of Ezetimibe by a Cocrystal Engineering Technique. Crystal Growth and Design, 2014, 14, 4475-4486.	3.0	57
5	Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Journal of Alloys and Compounds, 2016, 668, 33-39.	5 . 5	57
6	Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition. Sensors and Actuators A: Physical, 2021, 331, 112988.	4.1	52
7	Characterization of defects in ZnO nanocrystals: Photoluminescence and positron annihilation spectroscopic studies. Journal of Applied Physics, 2007, 102, 103514.	2.5	46
8	Influence of deposition time on the properties of ZnS/p-Si heterostructures. Materials Science in Semiconductor Processing, 2021, 122, 105471.	4.0	46
9	Disordered surface spins induced large exchange anisotropy in single-phase Sm3+ ions substituted nickel ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 489, 165320.	2.3	43
10	Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 435-443.	2.2	43
11	Size dependent exchange bias in single-phase Zn 0.3 Ni 0.7 Fe 2 O 4 ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 193-199.	2.3	42
12	Tuning the microstructural, optical and superexchange interactions with rare earth Eu doping in nickel ferrite nanoparticles. Materials Chemistry and Physics, 2020, 241, 122383.	4.0	42
13	Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 17055-17066.	2.2	38
14	Introducing magnetic properties in Fe-doped ZnO nanoparticles. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	38
15	Structural, magnetic and hyperfine characterizations of nanocrystalline Zn-Cd doped nickel ferrites. Journal of Magnetism and Magnetic Materials, 2017, 441, 710-717.	2.3	35
16	Role of deposition parameters on the properties of the fabricated heterojunction ZnS/p-Si Schottky diode. Physica Scripta, 2022, 97, 045819.	2.5	34
17	Effect of doping of chromium ions on the structural and magnetic properties of nickel ferrite. Ceramics International, 2016, 42, 7742-7747.	4.8	32
18	Exploring the magnetic ground state of vanadium doped zinc sulphide. Semiconductor Science and Technology, 2019, 34, 105006.	2.0	31

#	Article	IF	Citations
19	Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Applied Physics A: Materials Science and Processing, 2014, 116, 389-393.	2.3	29
20	A Comparative Investigation of Optical and Structural Properties of Cu-Doped CdO-Derived Nanostructures. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1439-1446.	1.8	28
21	Copper doped nickel ferrite nanoparticles: Jahn-Teller distortion and its effect on microstructural, magnetic and electronic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114864.	3 . 5	25
22	Preparation and characterizations of SiO2-coated nanoparticles of Mn0.4Zn0.6Fe2O4. Journal of Magnetism and Magnetic Materials, 2009, 321, 169-174.	2.3	24
23	Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	20
24	Correlations between microstructural and magnetic properties of Gd3+-doped spinel ferrite nanoparticles. European Physical Journal Plus, 2020, 135, 1.	2.6	20
25	Gd-doped soft Mn–Zn nanoferrites: synthesis, microstructural, magnetic and dielectric characterizations. Journal of Materials Science: Materials in Electronics, 2020, 31, 3529-3538.	2.2	16
26	Low temperature route to the multiferroic FeAlO3: XRD and Mössbauer characterizations. Hyperfine Interactions, 2008, 187, 101-107.	0.5	14
27	Tuning the microstructural, magnetic and optical properties of Cr substituted nanocrystalline copper-nickel ferrites. Journal of Magnetism and Magnetic Materials, 2020, 498, 166185.	2.3	14
28	Size variation in nanocrystalline Zn0.2Ni0.8Gd0.05Fe1.95O4 ferrites: Exchange bias effect and its correlation with disordered surface spins. Materials Research Bulletin, 2020, 125, 110785.	5 . 2	14
29	Effect of Jahn-Teller distortion on microstructural and dielectric properties of La based double perovskites. Journal of Alloys and Compounds, 2022, 892, 162204.	5 . 5	14
30	Evidence of exchange-coupled behavior in chromium-cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 456, 118-123.	2.3	13
31	Canted surface spins driven exchange anisotropy in erbium substituted nickel ferrite nanoparticles. Materials Characterization, 2020, 162, 110203.	4.4	13
32	A novel shape transformation of Fe–MgO nanocomposites: microstructural, magnetic and hyperfine investigations. Journal Physics D: Applied Physics, 2007, 40, 4425-4430.	2.8	11
33	Defect induced ferromagnetism in luminescent and doped CdS quantum dots. Journal of Materials Science: Materials in Electronics, 2015, 26, 7621-7628.	2.2	11
34	Defect-induced weak ferromagnetism in transition metal-doped ZnO nanoparticles. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	11
35	Large exchange bias effect in NiFe ₂ O ₄ /CoO nanocomposites. Materials Research Express, 2018, 5, 035029.	1.6	11
36	Optical properties of Silica capped Mn doped ZnS quantum dots. Physica Scripta, 2021, 96, 065802.	2.5	11

#	Article	IF	Citations
37	The exchange bias effect in CoFe ₂ O ₄ /NiO nanocomposites prepared by chemical co-precipitation method. Materials Research Express, 2019, 6, 056105.	1.6	10
38	Impact of In3+ ion substitution on microstructural, magnetic and dielectric responses of nickel–cobalt spinel ferrite nanocrystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 17762-17772.	2,2	10
39	Manganese ions substituted ZnO nanoparticles: Synthesis, microstructural and optical properties. Physica B: Condensed Matter, 2022, 627, 413523.	2.7	10
40	Spectroscopic investigation of iron salts doped polyaniline. Journal of Applied Polymer Science, 2009, 114, 2792-2797.	2.6	9
41	The Environmental Impacts and Allocation Methods Used in LCA Studies of Vegetable Oil-Based Bio-diesels. Waste and Biomass Valorization, 2015, 6, 579-603.	3.4	9
42	Super Exchange-Induced Canted Ferromagnetism in Transition Metal-Doped ZnS Quantum Dots. Journal of Electronic Materials, 2017, 46, 1270-1278.	2.2	9
43	Evidence of large exchange bias effect in single-phase spinel ferrite nanoparticles. Physica Scripta, 2020, 95, 095812.	2.5	9
44	Structural, optical and magnetic studies of co-doped mesoscopic ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 1053-1059.	2.2	8
45	Ce3+-doped nanocrystalline cobalt–zinc spinel ferrite: microstructural, magnetic, and optical characterizations. Journal of Materials Science: Materials in Electronics, 2020, 31, 6207-6216.	2.2	8
46	Evidence of structural and two magnetic phase transitions in Cu doped La2FeMnO6 double perovskites. Journal of Alloys and Compounds, 2022, 918, 165694.	5 . 5	8
47	Value stream mapping based on energy and cost system for biodiesel production. International Journal of Sustainable Manufacturing, 2014, 3, 95.	0.3	7
48	On the correlation of the effect of defects on the microstructural, optical and magnetic properties of doped ZnO. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144, 115370.	2.7	7
49	Luminescence and magnetism studies of strongly quantum confined SnO2 dots. Journal of Materials Science: Materials in Electronics, 2016, 27, 4392-4398.	2.2	6
50	Influence of magnetic ion doping on structural, optical, magnetic and hyperfine properties of nanocrystalline SnO2 based dilute magnetic semiconductors. Journal of Materials Science: Materials in Electronics, 2017, 28, 3285-3292.	2.2	6
51	Emergence of large exchange anisotropy in Pr doped nanocrystalline spinel ferrites. Materials Chemistry and Physics, 2021, 261, 124208.	4.0	6
52	Correlating the microstructural and optical properties of vanadium ion-doped ZnO nanocrystals. Bulletin of Materials Science, 2022, 45, 1.	1.7	6
53	SYNTHESIS, MICROSTRUCTURAL AND MAGNETIC CHARACTERIZATIONS OF SELF-ASSEMBLED HEMATITE NANOPARTICLES. Modern Physics Letters B, 2012, 26, 1250140.	1.9	5
54	Life Cycle Assessment of Bio-diesel Production—A Comparative Analysis. Journal of the Institution of Engineers (India): Series C, 2014, 95, 143-149.	1.2	5

#	Article	IF	CITATIONS
55	Evidence of Bound Magnetic Polaron-Mediated Weak Ferromagnetism in co-doped SnO2 Nanocrystals: Microstructural, Optical, Hyperfine, and Magnetic Investigations. Journal of Electronic Materials, 2016, 45, 3562-3569.	2.2	5
56	Environmental impact of vegetable oil-based bio-diesel by life cycle assessment for sustainable cleaner production. International Journal of Energy Technology and Policy, 2015, 11, 13.	0.2	4
57	Existence of exchange bias and large coercivity in NiFe2O4/CoO core–shell structured nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 11748-11753.	2.2	4
58	Spin-flop in transition-metal-doped SnO2 quantum dots. Materials Chemistry and Physics, 2020, 254, 123537.	4.0	4
59	Tailoring the microstructural, magnetic and dielectric properties of vanadium ions substituted nickel ferrite nanocrystals. Journal of Materials Science: Materials in Electronics, 2021, 32, 10140-10150.	2.2	3
60	AC conductivity and dielectric analysis of graphite–clay nanocomposite. Canadian Journal of Physics, 2011, 89, 1255-1260.	1.1	2
61	Quantitative assessment of biodiesel production: A model-based scenarios of sustainable development. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	2
62	Exchange bias effect and exchange spring-type behavior of core-shell structured MnFe2O4/α-Fe2O3 nanocomposite systems. European Physical Journal B, 2020, 93, 1.	1.5	2
63	Samarium Ion-Doped Maghemite Nanoparticles: Synthesis, Microstructural, Optical, and Magnetic Characterizations. Journal of Superconductivity and Novel Magnetism, 2021, 34, 2643-2650.	1.8	2
64	Interfacial spin coupling and exchange anisotropy in core–shell MnFe2O4/α-Fe2O3 nanocomposites. European Physical Journal Plus, 2020, 135, 1.	2.6	1
65	Quantum Confined ZnO Nanoparticles: Structural and Optical Studies. , 2011, , .		0
66	Spin disorder induced reentrant ferromagnetism in iron-based nanocomposites. Applied Physics A: Materials Science and Processing, 2012, 106, 507-510.	2.3	0
67	A NOVEL SYNTHESIS ROUTE TO BIO-FUNCTIONALIZED AND MAGNETICALLY ADDRESSABLE FERROGELS. Modern Physics Letters B, 2013, 27, 1350239.	1.9	0
68	ZnFe2O4/CuO core–shell structured nanoparticles: synthesis, structural and magnetic properties. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	0
69	Correlating the microstructural, optical, electronic and magnetic properties of Î ³ -Fe2-xPrxO3 nanoparticles: a defective spinel cubic iron oxide. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	0
70	Tailoring Magnetic Responses of Nanoscale Integrated Magnetite and Cadmium Sulphide: Microstructural, Magnetic and Hyperfine Studies. Nanoscience and Nanotechnology Letters, 2012, 4, 110-116.	0.4	0