Christian SchA¶nenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5101746/publications.pdf

Version: 2024-02-01

257 papers

17,630 citations

72 h-index

10389

126

260 all docs

260 docs citations

260 times ranked

14226 citing authors

g-index

#	Article	IF	CITATIONS
1	Phase-dependent microwave response of a graphene Josephson junction. Physical Review Research, 2022, 4, .	3.6	13
2	2D materials shrink superconducting qubits. Nature Materials, 2022, 21, 381-382.	27.5	1
3	Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe. Physical Review Applied, 2022, 17, .	3.8	20
4	From Cooper pair splitting to nonlocal spectroscopy of a Shiba state. Physical Review Research, 2022, 4, .	3.6	7
5	Operation of parallel SNSPDs at high detection rates. Superconductor Science and Technology, 2021, 34, 024002.	3.5	15
6	Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact. Journal of Applied Physics, 2021, 129, .	2.5	23
7	Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits. Physical Review Applied, 2021, 15, .	3.8	16
8	Global strain-induced scalar potential in graphene devices. Communications Physics, 2021, 4, .	5.3	9
9	Superconducting Contacts to a Monolayer Semiconductor. Nano Letters, 2021, 21, 5614-5619.	9.1	15
10	New method of transport measurements on van der Waals heterostructures under pressure. Journal of Applied Physics, 2021, 130, .	2.5	16
11	Radio-frequency characterization of a supercurrent transistor made of a carbon nanotube. Materials for Quantum Technology, 2021, 1, 035003.	3.1	O
12	Spectroscopy of the local density of states in nanowires using integrated quantum dots. Physical Review B, 2021, 104, .	3.2	7
13	Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure. Npj 2D Materials and Applications, 2021, 5, .	7.9	34
14	Tailoring the Band Structure of Twisted Double Bilayer Graphene with Pressure. Nano Letters, 2021, 21, 8777-8784.	9.1	19
15	A double quantum dot spin valve. Communications Physics, 2020, 3, .	5. 3	23
16	Compact SQUID Realized in a Double-Layer Graphene Heterostructure. Nano Letters, 2020, 20, 7129-7135.	9.1	11
17	Out-of-plane corrugations in graphene based van der Waals heterostructures. Physical Review B, 2020, 102, .	3.2	5
18	One-Dimensional Edge Transport in Few-Layer WTe ₂ . Nano Letters, 2020, 20, 4228-4233.	9.1	56

#	Article	IF	CITATIONS
19	Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires. Physical Review Letters, 2020, 125, 017701.	7.8	38
20	Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. Nanotechnology, 2020, 31, 135003.	2.6	12
21	Controllable p–n junctions in three-dimensional Dirac semimetal Cd3As2 nanowires. Nanotechnology, 2020, 31, 205001.	2.6	4
22	Large spatial extension of the zero-energy Yu–Shiba–Rusinov state in a magnetic field. Nature Communications, 2020, 11, 1834.	12.8	17
23	Mobility Enhancement in Graphene by <i>inÂsitu</i> Reduction of Random Strain Fluctuations. Physical Review Letters, 2020, 124, 157701.	7.8	20
24	Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots. Communications Physics, 2019, 2, .	5.3	28
25	Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors. Journal of Applied Physics, 2019, 126, 164501.	2.5	16
26	In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices. Nano Letters, 2019, 19, 4097-4102.	9.1	29
27	GHz nanomechanical resonator in an ultraclean suspended graphene p–n junction. Nanoscale, 2019, 11, 4355-4361.	5.6	34
28	New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures. Nano Letters, 2019, 19, 2371-2376.	9.1	85
29	Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy. Physical Review B, 2019, 99, .	3.2	3
30	Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mi><mml:mn>2<mml:mi>h</mml:mi></mml:mn></mml:mi></mml:msub></mml:math> -BN	mn>3.2	l:msub>118
31	heterostructures. Physical Review B, 2018, 97, . Blocking-state influence on shot noise and conductance in quantum dots. Physical Review B, 2018, 97, .	3.2	5
32	High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Applied Physics Letters, 2018, 112, .	3.3	89
33	Quantum-Confined Stark Effect in a MoS ₂ Monolayer van der Waals Heterostructure. Nano Letters, 2018, 18, 1070-1074.	9.1	55
34	Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures. Physical Review B, 2018, 97, .	3.2	21
35	Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice. Physical Review Letters, 2018, 121, 137701.	7.8	21
36	Observation of High Accuracy Resistance Quantization in CVD Graphene. , 2018, , .		0

#	Article	IF	CITATIONS
37	Wideband and On-Chip Excitation for Dynamical Spin Injection into Graphene. Physical Review Applied, 2018, 10, .	3.8	5
38	Coexistence of classical snake states and Aharonov-Bohm oscillations along graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>\hat{a}'<td>nl:matext><</td><td>:mnabmi>n</td></mml:mtext></mml:mrow></mml:math>	nl:m ate xt><	:mn ab mi>n
39	Cooper-pair splitting in two parallel InAs nanowires. New Journal of Physics, 2018, 20, 063021.	2.9	34
40	Charge Noise in Organic Electrochemical Transistors. Physical Review Applied, 2017, 7, .	3.8	20
41	Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)., 2017,,.		О
42	Optically probing the detection mechanism in a molybdenum silicide superconducting nanowire single-photon detector. Applied Physics Letters, 2017, 110, .	3.3	32
43	Fabry-Pérot Resonances in a Graphene/hBN Moiré Superlattice. Nano Letters, 2017, 17, 328-333.	9.1	32
44	Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene. Nano Letters, 2017, 17, 5389-5393.	9.1	20
45	Andreev bound states probed in three-terminal quantum dots. Physical Review B, 2017, 96, .	3.2	54
46	Measuring a Quantum Dot with an Impedance-Matching On-Chip Superconducting LC Resonator at Gigahertz Frequencies. Physical Review Applied, 2017, 8, .	3.8	10
47	Restoring the Electrical Properties of CVD Graphene via Physisorption of Molecular Adsorbates. ACS Applied Materials & Interfaces, 2017, 9, 25014-25022.	8.0	27
48	Contactless Microwave Characterization of Encapsulated Graphene pâ^n Junctions. Physical Review Applied, 2017, 7, .	3.8	1
49	Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection. Biosensors, 2016, 6, 21.	4.7	10
50	Cooperâ€Paare tunneln durch einen Quantenpunkt. Physik in Unserer Zeit, 2016, 47, 62-63.	0.0	0
51	Magnetoresistance engineering and singlet/triplet switching in lnAs nanowire quantum dots with ferromagnetic sidegates. Physical Review B, 2016 , 94 , .	3.2	7
52	Label-Free FimH Protein Interaction Analysis Using Silicon Nanoribbon BioFETs. ACS Sensors, 2016, 1, 781-788.	7.8	15
53	Additional peak appearing in the one-photon luminescence of single gold nanorods. Optics Letters, 2016, 41, 1325.	3.3	4
54	Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime. Nanoscale, 2016, 8, 11480-11486.	5.6	10

#	Article	IF	CITATIONS
55	Comparative study of single and multi domain CVD graphene using largeâ€area Raman mapping and electrical transport characterization. Physica Status Solidi - Rapid Research Letters, 2016, 10, 807-811.	2.4	12
56	Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p–n Junction. Nano Letters, 2016, 16, 6988-6993.	9.1	26
57	A success story. Nature Nanotechnology, 2016, 11, 908-908.	31.5	0
58	Full characterization of a carbon nanotube parallel double quantum dot. Physica Status Solidi (B): Basic Research, 2016, 253, 2428-2432.	1.5	6
59	Spin transport in fully hexagonal boron nitride encapsulated graphene. Physical Review B, 2016, 93, .	3.2	44
60	Characterization of HMDS treated CVD graphene. , 2016, , .		1
61	Gate-controlled conductance enhancement from quantum Hall channels along graphene p–n junctions. Nanoscale, 2016, 8, 19910-19916.	5.6	10
62	Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. Applied Physics Letters, 2016, 108, 172604.	3.3	15
63	Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. Nanotechnology, 2016, 27, 195303.	2.6	6
64	Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation. 2D Materials, 2016, 3, 011008.	4.4	5
65	Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching. Physical Review Applied, 2015, 4, .	3.8	14
66	Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot. Physical Review Letters, 2015, 115, 216801.	7.8	41
67	Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter. Physical Review Letters, 2015, 115, 227003.	7.8	59
68	Gate tuneable beamsplitter in ballistic graphene. Applied Physics Letters, 2015, 107, .	3.3	44
69	Point contacts in encapsulated graphene. Applied Physics Letters, 2015, 107, .	3.3	6
70	Fork stamping of pristine carbon nanotubes onto ferromagnetic contacts for spin-valve devices. Physica Status Solidi (B): Basic Research, 2015, 252, 2496-2502.	1.5	9
71	Scalable Tight-Binding Model for Graphene. Physical Review Letters, 2015, 114, 036601.	7.8	74
72	Snake trajectories in ultraclean graphene p–n junctions. Nature Communications, 2015, 6, 6470.	12.8	93

#	Article	IF	Citations
73	Formation Mechanism of Metal–Molecule–Metal Junctions: Molecule-Assisted Migration on Metal Defects. Journal of Physical Chemistry C, 2015, 119, 19438-19451.	3.1	14
74	Entanglement Detection with Non-Ideal Ferromagnetic Detectors. Acta Physica Polonica A, 2015, 127, 493-495.	0.5	5
75	Graphene spintronics: the European Flagship perspective. 2D Materials, 2015, 2, 030202.	4.4	243
76	Competing surface reactions limiting the performance of ion-sensitive field-effect transistors. Sensors and Actuators B: Chemical, 2015, 220, 500-507.	7.8	22
77	Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots. Nano Letters, 2015, 15, 4585-4590.	9.1	22
78	Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon. ACS Nano, 2015, 9, 4872-4881.	14.6	53
79	Clean carbon nanotubes coupled to superconducting impedance-matching circuits. Nature Communications, 2015, 6, 7165.	12.8	37
80	Guiding of Electrons in a Few-Mode Ballistic Graphene Channel. Nano Letters, 2015, 15, 5819-5825.	9.1	64
81	Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. Chemical Society Reviews, 2015, 44, 999-1014.	38.1	80
82	Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy. Applied Physics Letters, 2014, 104, .	3.3	30
83	Carbon nanotube quantum dots on hexagonal boron nitride. Applied Physics Letters, 2014, 105, .	3.3	13
84	Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. Physical Review B, $2014, 89, \ldots$	3. 2	38
85	Nonlocal spectroscopy of Andreev bound states. Physical Review B, 2014, 89, .	3.2	80
86	Optimized fabrication and characterization of carbon nanotube spin valves. Journal of Applied Physics, 2014, 115, .	2.5	25
87	Large-scale fabrication of BN tunnel barriers for graphene spintronics. Journal of Applied Physics, 2014, 116, 074306.	2.5	45
88	Local electrical tuning of the nonlocal signals in a Cooper pair splitter. Physical Review B, 2014, 90, .	3.2	44
89	High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale, 2014, 6, 7249-7254.	5.6	68
90	Investigation of the dominant $1/f$ noise source in silicon nanowire sensors. Sensors and Actuators B: Chemical, 2014, 191, 270-275.	7.8	46

#	Article	IF	Citations
91	Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications. Applied Physics Letters, 2014, 104, 013102.	3.3	18
92	Random telegraph signals in molecular junctions. Journal of Physics Condensed Matter, 2014, 26, 474202.	1.8	24
93	Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout. Sensors and Actuators B: Chemical, 2014, 204, 568-577.	7.8	15
94	Regulating a Benzodifuran Single Molecule Redox Switch via Electrochemical Gating and Optimization of Molecule/Electrode Coupling. Journal of the American Chemical Society, 2014, 136, 8867-8870.	13.7	100
95	Fabrication of ballistic suspended graphene with local-gating. Carbon, 2014, 79, 486-492.	10.3	21
96	CVD graphene for electrical quantum metrology. , 2014, , .		1
97	Ballistic interferences in suspended graphene. Nature Communications, 2013, 4, 2342.	12.8	185
98	High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale, 2013, 5, 12104.	5.6	77
99	A Verilog-A model for silicon nanowire biosensors: From theory to verification. Sensors and Actuators B: Chemical, 2013, 179, 293-300.	7.8	11
100	Hydrogen plasma microlithography of graphene supported on a Si/SiO2 substrate. Applied Physics Letters, 2013, 102, .	3.3	7
101	Two Indistinguishable Electrons Interfere in an Electronic Device. Science, 2013, 339, 1041-1042.	12.6	2
102	Interaction of single-layer CVD graphene with a metasurface of terahertz split-ring resonators. Proceedings of SPIE, 2013, , .	0.8	1
103	Selective Sodium Sensing with Gold-Coated Silicon Nanowire Field-Effect Transistors in a Differential Setup. ACS Nano, 2013, 7, 5978-5983.	14.6	88
104	Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial. Nano Letters, 2013, 13, 3193-3198.	9.1	163
105	Silicon nanowire ion-sensitive field-effect transistor array integrated with a CMOS-based readout chip. , 2013 , , .		4
106	Ultraclean Single, Double, and Triple Carbon Nanotube Quantum Dots with Recessed Re Bottom Gates. Nano Letters, 2013, 13, 4522-4526.	9.1	18
107	g-factor anisotropy in nanowire-based InAs quantum dots. , 2013, , .		10
108	Spin symmetry of the bilayer graphene ground state. Physical Review B, 2013, 87, .	3.2	29

#	Article	IF	CITATIONS
109	Potassium sensing with membrane-coated silicon nanowire field-effect transistors., 2013,,.		1
110	To Screen or Not to Screen, That is the Question!. Physics Magazine, 2013, 6, .	0.1	11
111	Spontaneously Gapped Ground State in Suspended Bilayer Graphene. Physical Review Letters, 2012, 108, 076602.	7.8	147
112	Near-Unity Cooper Pair Splitting Efficiency. Physical Review Letters, 2012, 109, 157002.	7.8	157
113	Sensing with liquid-gated graphene field-effect transistors. , 2012, , .		0
114	Kondo effect and spin-active scattering in ferromagnet-superconductor junctions. Physical Review B, 2012, 85, .	3.2	10
115	True Reference Nanosensor Realized with Silicon Nanowires. Langmuir, 2012, 28, 9899-9905.	3.5	55
116	Understanding the Electrolyte Background for Biochemical Sensing with Ion-Sensitive Field-Effect Transistors. ACS Nano, 2012, 6, 9291-9298.	14.6	105
117	Homogeneity of bilayer graphene. Solid State Communications, 2012, 152, 2053-2057.	1.9	12
118	Force–conductance correlation in individual molecular junctions. Nanotechnology, 2012, 23, 365201.	2.6	30
119	Quantum Hall Effect in Graphene with Superconducting Electrodes. Nano Letters, 2012, 12, 1942-1945.	9.1	99
120	Siliconâ€Based Ionâ€Sensitive Fieldâ€Effect Transistor Shows Negligible Dependence on Salt Concentration at Constant pH. ChemPhysChem, 2012, 13, 1157-1160.	2.1	18
121	Gate-tunable split Kondo effect in a carbon nanotube quantum dot. Nanotechnology, 2011, 22, 265204.	2.6	8
122	Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors. Applied Physics Letters, 2011, 98, .	3.3	51
123	Graphene Transistors Are Insensitive to pH Changes in Solution. Nano Letters, 2011, 11, 3597-3600.	9.1	157
124	Conductance fluctuations in graphene devices with superconducting contacts in different charge density regimes. Physica Status Solidi (B): Basic Research, 2011, 248, 2649-2652.	1.5	0
125	Finite-Bias Cooper Pair Splitting. Physical Review Letters, 2011, 107, 136801.	7.8	138
126	Novel Cruciform Structures as Model Compounds for Coordination Induced Single Molecule Switches. Chimia, 2010, 64, 140.	0.6	6

#	Article	IF	CITATIONS
127	Oligoaryl Cruciform Structures as Model Compounds for Coordinationâ€Induced Singleâ€Molecule Switches. European Journal of Organic Chemistry, 2010, 2010, 833-845.	2.4	21
128	Eine Trenneinrichtung f $\tilde{A}\frac{1}{4}$ r Quantenpaare. Physik in Unserer Zeit, 2010, 41, 58-59.	0.0	0
129	Hybrid superconductor–quantum dot devices. Nature Nanotechnology, 2010, 5, 703-711.	31.5	350
130	Ferromagnetic Proximity Effect in a Ferromagnet–Quantum-Dot–Superconductor Device. Physical Review Letters, 2010, 104, 246804.	7.8	75
131	Permalloy-based carbon nanotube spin-valve. Applied Physics Letters, 2010, 97, .	3.3	41
132	Magnetic field and contact resistance dependence of non-local charge imbalance. Nanotechnology, 2010, 21, 274002.	2.6	24
133	Superconductivity-enhanced conductance fluctuations in few-layer graphene. Nanotechnology, 2010, 21, 274005.	2.6	13
134	Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Letters, 2010, 10, 2268-2274.	9.1	307
135	Cyclic Conductance Switching in Networks of Redox-Active Molecular Junctions. Nano Letters, 2010, 10, 759-764.	9.1	108
136	Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer. Physical Review B, 2009, 79, .	3.2	80
137	Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature, 2009, 461, 960-963.	27.8	426
138	Gap opens in metallic nanotubes. Nature Nanotechnology, 2009, 4, 147-148.	31.5	4
139	Dual Gated Silicon Nanowire Field Effect Transistors. Procedia Chemistry, 2009, 1, 678-681.	0.7	22
140	Tuning the Josephson current in carbon nanotubes with the Kondo effect. Physical Review B, 2009, 79, .	3.2	106
141	Light-Controlled Conductance Switching of Ordered Metalâ^'Moleculeâ^'Metal Devices. Nano Letters, 2009, 9, 76-80.	9.1	299
142	Contact resistance dependence of crossed Andreev reflection. Europhysics Letters, 2009, 87, 27011.	2.0	47
143	Molecular junctions based on aromatic coupling. Nature Nanotechnology, 2008, 3, 569-574.	31.5	336
144	Electrical Conductance of Conjugated Oligomers at the Single Molecule Level. Journal of the American Chemical Society, 2008, 130, 1080-1084.	13.7	180

#	Article	IF	CITATIONS
145	Giant Fluctuations and Gate Control of the $\langle i \rangle g \langle i \rangle$ -Factor in InAs Nanowire Quantum Dots. Nano Letters, 2008, 8, 3932-3935.	9.1	90
146	Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. New Journal of Physics, 2008, 10, 065019.	2.9	36
147	Conductance values of alkanedithiol molecular junctions. New Journal of Physics, 2008, 10, 065018.	2.9	27
148	Large oscillating nonlocal voltage in multiterminal single-wall carbon nanotube devices. Physical Review B, 2008, 77, .	3.2	13
149	Scaling of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mo>a^•</mml:mo><mml:mi>f</mml:mi></mml:math> noise in tunable break junctions. Physical Review B, 2008, 78, .	3.2	24
150	Even-Odd Effect in Andreev Transport through a Carbon Nanotube Quantum Dot. Physical Review Letters, 2007, 99, 126602.	7.8	127
151	Feedback controlled electromigration in four-terminal nanojunctions. Applied Physics Letters, 2007, 91, 053118.	3.3	72
152	Controlled formation of metallic nanowires via Au nanoparticle ac trapping. Nanotechnology, 2007, 18, 235202.	2.6	35
153	New Cruciform Structures:  Toward Coordination Induced Single Molecule Switches. Journal of Organic Chemistry, 2007, 72, 8337-8344.	3.2	66
154	Tetrathiafulvalene-based molecular nanowires. Chemical Communications, 2007, , 4854.	4.1	33
155	Spectroscopy of Molecular Junction Networks Obtained by Place Exchange in 2D Nanoparticle Arrays. Journal of Physical Chemistry C, 2007, 111, 18445-18450.	3.1	61
156	Mapping electron delocalization by charge transport spectroscopy in an artificial molecule. Annalen Der Physik, 2007, 16, 672-677.	2.4	2
157	Charge and spin transport in carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S1-S9.	2.0	25
158	Molecular states in carbon nanotube double quantum dots. Physical Review B, 2006, 74, .	3.2	75
159	Electrical Conductance of Molecular Junctions by a Robust Statistical Analysis. Nano Letters, 2006, 6, 2238-2242.	9.1	189
160	Directional scrolling of hetero-films on Si(110) and Si(111) surfaces. Microelectronic Engineering, 2006, 83, 1233-1236.	2.4	2
161	Anomalous Coiling of SiGe/Si and SiGe/Si/Cr Helical Nanobelts. Nano Letters, 2006, 6, 1311-1317.	9.1	163
162	Fabrication and characterization of freestanding Si/Cr micro- and nanospirals. Microelectronic Engineering, 2006, 83, 1237-1240.	2.4	40

#	Article	IF	Citations
163	Molecular Electronics. Imaging & Microscopy, 2006, 8, 37-37.	0.1	1
164	Reversible Formation of Molecular Junctions in 2D Nanoparticle Arrays. Advanced Materials, 2006, 18, 2444-2447.	21.0	123
165	Defining and controlling double quantum dots in single-walled carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S64-S68.	2.0	10
166	Positive Cross Correlations in a Normal-Conducting Fermionic Beam Splitter. Physical Review Letters, 2006, 96, 046804.	7.8	43
167	Controlling spin in an electronic interferometer with spin-active interfaces. Europhysics Letters, 2006, 74, 320-326.	2.0	29
168	Nanospintronics with carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S78-S95.	2.0	99
169	Electric field control of spin transport. Nature Physics, 2005, 1, 99-102.	16.7	334
170	Electrical Conductance of Atomic Contacts in Liquid Environments. Small, 2005, 1, 1067-1070.	10.0	56
171	Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nanotechnology, 2005, 16, 655-663.	2.6	128
172	Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions. Physical Review B, 2005, 72, .	3.2	31
173	Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Applied Physics Letters, 2005, 86, 112109.	3.3	53
174	Resonant tunnelling through a C60molecular junction in a liquid environment. Nanotechnology, 2005, 16, 2143-2148.	2.6	32
175	Shot noise: from Schottky's vacuum tube to present-day quantum devices. , 2004, , .		1
176	Kondo effect in carbon nanotubes at half filling. Physical Review B, 2004, 70, .	3.2	57
177	Quantum dot coupled to a normal and a superconducting lead. Nanotechnology, 2004, 15, S479-S482.	2.6	58
178	Conductance properties of nanotubes coupled to superconducting leads: signatures of Andreev states dynamics. Solid State Communications, 2004, 131, 625-630.	1.9	15
179	Observation of Fano resonances in single-wall carbon nanotubes. Physical Review B, 2004, 70, .	3.2	100
180	Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes. Nano Letters, 2003, 3, 1577-1580.	9.1	90

#	Article	IF	CITATIONS
181	Sensitivity of single multiwalled carbon nanotubes to the environment. New Journal of Physics, 2003, 5, 138-138.	2.9	46
182	Multiple Andreev Reflections in a Carbon Nanotube Quantum Dot. Physical Review Letters, 2003, 91, 057005.	7.8	165
183	Ambipolar field-effect transistor on as-grown single-wall carbon nanotubes. Nanotechnology, 2003, 14, 327-331.	2.6	43
184	Quantum Shot Noise. Physics Today, 2003, 56, 37-42.	0.3	166
185	Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures. , 2003, , 119-133.		1
186	Shot noise of series quantum point contacts intercalating chaotic cavities. Physical Review B, 2002, 66, .	3.2	21
187	Multiwall Carbon Nanotubes as Quantum Dots. Physical Review Letters, 2002, 88, 156801.	7.8	172
188	Vortex motion noise in micrometer-sized thin films of the amorphousNb0.7Ge0.3weak-pinning superconductor. Physical Review B, 2002, 66, .	3.2	8
189	Electronic and Mechanical Properties of Carbon Nanotubes. , 2002, , 297-320.		13
190	Electron antibunching finally made beautiful. Physics World, 2002, 15, 23-24.	0.0	0
191	The amplitude of non-equilibrium quantum interference in metallic mesoscopic systems. Europhysics Letters, 2002, 59, 437-443.	2.0	14
192	Nanomechanics of Microtubules. Physical Review Letters, 2002, 89, 248101.	7.8	309
193	Quantum Dot in the Kondo Regime Coupled to Superconductors. Physical Review Letters, 2002, 89, 256801.	7.8	256
194	Fabrication and superconducting properties of nanostructured SFS contacts. Journal of Magnetism and Magnetic Materials, 2002, 240, 598-600.	2.3	25
195	Orientation and Positioning of DNA Molecules with an Electric Field Technique. Single Molecules, 2002, 3, 189-193.	0.9	50
196	UHV compatible nanostructuring technique for mesoscopic hybrid devices: application to superconductor/ferromagnet Josephson contacts. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 341-345.	2.7	4
197	Crossover between classical and quantum shot noise in chaotic cavities. Nature, 2002, 415, 765-767.	27.8	84
198	Shot Noise by Quantum Scattering in Chaotic Cavities. Physical Review Letters, 2001, 86, 2114-2117.	7.8	83

#	Article	IF	CITATIONS
199	Andreev reflection and excess noise in diffusive SNS junctions. Physica C: Superconductivity and Its Applications, 2001, 352, 61-66.	1.2	O
200	Physical Properties of Multi-wall Nanotubes., 2001,, 329-391.		47
201	Electrochemical carbon nanotube field-effect transistor. Applied Physics Letters, 2001, 78, 1291-1293.	3.3	253
202	Comment on "Magnetoresistance and differential conductance in mutliwalled carbon nanotubes― Physical Review B, 2001, 64, .	3.2	10
203	Suppression of Tunneling into Multiwall Carbon Nanotubes. Physical Review Letters, 2001, 87, 166801.	7.8	166
204	Thermopower of Mesoscopic Spin Glasses. , 2001, , 33-42.		0
205	PHYSICS OF MULTIWALLED CARBON NANOTUBES., 2001,,.		1
206	Interference and interactions in multiwall nanotubes. Physica B: Condensed Matter, 2000, 280, 384-385.	2.7	3
207	The Hanbury Brown and Twiss experiment with fermions. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 314-317.	2.7	54
208	Multiple Andreev reflection and giant excess noise in diffusive superconductor/normal-metal/superconductor junctions. Physical Review B, 2000, 62, 4079-4085.	3.2	77
209	Colloidal Dispersions of Gold Rods:Â Synthesis and Optical Properties. Langmuir, 2000, 16, 451-458.	3.5	286
210	Mesoscopic effects in the thermopower of dilute AuFe alloys. Advances in Solid State Physics, 1999, , $311-321$.	0.8	0
211	Quantentransport in multiwall carbon nanotubes. , 1999, , .		1
212	Nonorganic evaporation mask for superconducting nanodevices. Microelectronic Engineering, 1999, 46, 149-152.	2.4	20
213	Aharonov–Bohm oscillations in carbon nanotubes. Nature, 1999, 397, 673-675.	27.8	736
214	Electrical conduction through DNA molecules. Nature, 1999, 398, 407-410.	27.8	1,070
215	Interference and Interaction in multi-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 69, 283-295.	2.3	282
216	1/3-shot-noise suppression in diffusive nanowires. Physical Review B, 1999, 59, 2871-2880.	3.2	139

#	Article	IF	CITATIONS
217	The Fermionic Hanbury Brown and Twiss Experiment. Science, 1999, 284, 296-298.	12.6	359
218	Contacting single template synthesized nanowires for electric measurements. Microelectronic Engineering, 1998, 41-42, 571-574.	2.4	9
219	Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Applied Physics Letters, 1998, 73, 274-276.	3.3	294
220	Size Dependent Thermopower in Mesoscopic AuFe Wires. Physical Review Letters, 1998, 81, 2982-2985.	7.8	32
221	Electrical properties of single carbon nanotubes. , 1998, , .		4
222	Electron heating effects in diffusive metal wires. Applied Physics Letters, 1997, 71, 773-775.	3.3	45
223	Microscope images individual charges. Physics World, 1997, 10, 25-27.	0.0	2
224	Aqueous Gold Sols of Rod-Shaped Particles. Journal of Physical Chemistry B, 1997, 101, 852-854.	2.6	240
225	Template Synthesis of Nanowires in Porous Polycarbonate Membranes:  Electrochemistry and Morphology. Journal of Physical Chemistry B, 1997, 101, 5497-5505.	2.6	479
226	SHOT NOISE REDUCTION IN LONG MESOSCOPIC WIRES. , 1997, , .		0
227	NMR study of the structural properties of electrodeposited Co/Cu multilayers. Journal of Magnetism and Magnetic Materials, 1996, 156, 29-30.	2.3	10
228	Scanning tunnelling microscope-induced oxidation of hydrogen passivated silicon surfaces. Thin Solid Films, 1996, 281-282, 637-639.	1.8	0
229	Nanolithography on hydrogen-terminated silicon by scanning-probe microscopy. Microelectronic Engineering, 1996, 32, 203-217.	2.4	5
230	Preamplifier for electricâ€current noise measurements at low temperatures. Review of Scientific Instruments, 1996, 67, 2977-2980.	1.3	14
231	Nanowires Grown Electrochemically in Porous Templates. Materials Research Society Symposia Proceedings, 1996, 451, 359.	0.1	2
232	Shot-Noise Suppression in the Single-Electron Tunneling Regime. , 1996, , 317-326.		0
233	Giant magnetoresistance of electrodeposited Co/Cu multilayers. Journal of Magnetism and Magnetic Materials, 1995, 148, 455-465.	2.3	113
234	Resistless high resolution optical lithography on silicon. Applied Physics Letters, 1995, 67, 2989-2991.	3.3	34

#	Article	IF	CITATIONS
235	Shot-Noise Suppression in the Single-Electron Tunneling Regime. Physical Review Letters, 1995, 75, 1610-1613.	7.8	166
236	Fabrication of large arrays of metallic nanowires on Vâ€grooved substrates. Applied Physics Letters, 1995, 67, 1489-1491.	3.3	9
237	Fabrication of metallic nanowires with a scanning tunneling microscope. Applied Physics Letters, 1995, 66, 1325-1327.	3.3	73
238	Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 805.	1.6	46
239	Formation of Holes in Alkanethiol Monolayers on Gold. [Erratum to document cited in CA121:66567]. The Journal of Physical Chemistry, 1995, 99, 469-474.	2.9	2
240	Domain Structure of Self-Assembled Alkanethiol Monolayers on Gold. The Journal of Physical Chemistry, 1995, 99, 3259-3271.	2.9	199
241	Decapitation of tungsten field emitter tips during sputter sharpening. Surface Science, 1995, 339, L925-L930.	1.9	21
242	Formation of Holes in Alkanethiol Monolayers on Gold. The Journal of Physical Chemistry, 1994, 98, 6826-6834.	2.9	147
243	What Are the "Holes" in Self-Assembled Monolayers of Alkanethiols on Gold?. Langmuir, 1994, 10, 611-614.	3.5	261
244	Single-electron tunneling in double-barrier junctions by scanning tunneling microscopy. Applied Surface Science, 1993, 67, 222-227.	6.1	21
245	Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions. Physica B: Condensed Matter, 1993, 189, 218-224.	2.7	11
246	Single-Electron Tunnelling Observed At Room Temperature by Scanning-Tunnelling Microscopy. Europhysics Letters, 1992, 20, 249-254.	2.0	125
247	Single-electron tunneling up to room temperature. Physica Scripta, 1992, T45, 289-291.	2.5	39
248	Charge flow during metal-insulator contact. Physical Review B, 1992, 45, 3861-3864.	3.2	64
249	Luminescence in scanning tunneling microscopy on Ill–V nanostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 409.	1.6	101
250	Characterization of a titanium nanoscopic wire by STM and SFM. Nanotechnology, 1991, 2, 96-102.	2.6	4
251	Understanding magnetic force microscopy. European Physical Journal B, 1990, 80, 373-383.	1.5	134
252	Nanometer resolution in luminescence microscopy of Illâ€V heterostructures. Applied Physics Letters, 1990, 56, 1564-1566.	3.3	156

#	Article	IF	CITATIONS
253	Separation of magnetic and topographic effects in force microscopy. Journal of Applied Physics, 1990, 67, 7278-7280.	2.5	68
254	Observation of single charge carriers by force microscopy. Physical Review Letters, 1990, 65, 3162-3164.	7.8	245
255	Scanning tunneling microscopy as a tool to study surface roughness of sputtered thin films. Journal of Applied Physics, 1989, 66, 4258-4261.	2.5	19
256	A differential interferometer for force microscopy. Review of Scientific Instruments, 1989, 60, 3131-3134.	1.3	185
257	Hall-effect and resistivity study of the heavy-fermion systemURu2Si2. Physical Review B, 1987, 35, 5375-5378.	3.2	141