
Daisuke Miki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/510151/publications.pdf Version: 2024-02-01

DAISHIKE MIKI

#	Article	IF	CITATIONS
1	Simple RNAi Vectors for Stable and Transient Suppression of Gene Function in Rice. Plant and Cell Physiology, 2004, 45, 490-495.	3.1	502
2	RNA Silencing of Single and Multiple Members in a Gene Family of Rice. Plant Physiology, 2005, 138, 1903-1913.	4.8	270
3	An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature, 2010, 465, 106-109.	27.8	228
4	A Histone Acetyltransferase Regulates Active DNA Demethylation in <i>Arabidopsis</i> . Science, 2012, 336, 1445-1448.	12.6	224
5	CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications, 2018, 9, 1967.	12.8	178
6	ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature, 2008, 455, 1259-1262.	27.8	150
7	The genome of broomcorn millet. Nature Communications, 2019, 10, 436.	12.8	130
8	Insights into the Localization and Function of the Membrane Trafficking Regulator GNOM ARF-GEF at the Golgi Apparatus in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 3062-3076.	6.6	121
9	Analysis of the Rac/Rop Small GTPase Family in Rice: Expression, Subcellular Localization and Role in Disease Resistance. Plant and Cell Physiology, 2010, 51, 585-595.	3.1	113
10	The Methyl-CpG-Binding Protein MBD7 Facilitates Active DNA Demethylation to Limit DNA Hyper-Methylation and Transcriptional Gene Silencing. Molecular Cell, 2015, 57, 971-983.	9.7	112
11	<i>Arabidopsis</i> EDM2 promotes <i>IBM1</i> distal polyadenylation and regulates genome DNA methylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 527-532.	7.1	102
12	Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nature Communications, 2014, 5, 4062.	12.8	90
13	A DNA 3′ Phosphatase Functions in Active DNA Demethylation in Arabidopsis. Molecular Cell, 2012, 45, 357-370.	9.7	81
14	A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Research, 2017, 27, 226-240.	12.0	80
15	Sulfamethazine Suppresses Epigenetic Silencing in <i>Arabidopsis</i> by Impairing Folate Synthesis. Plant Cell, 2012, 24, 1230-1241.	6.6	77
16	RNAi-mediated Silencing of OsGEN-L (OsGEN-like), a New Member of the RAD2/XPG Nuclease Family, Causes Male Sterility by Defect of Microspore Development in Rice. Plant and Cell Physiology, 2005, 46, 699-715.	3.1	75
17	Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16641-16650.	7.1	73
18	DNA Replication Factor C1 Mediates Genomic Stability and Transcriptional Gene Silencing in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 2336-2352.	6.6	72

DAISUKE ΜΙΚΙ

#	Article	IF	CITATIONS
19	Small interfering RNA (siRNA) targeting of endogenous promoters induces DNA methylation, but not necessarily gene silencing, in rice. Plant Journal, 2008, 53, 65-77.	5.7	65
20	A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLoS Genetics, 2013, 9, e1003779.	3.5	58
21	DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6, 983-995.	9.3	48
22	DNA demethylase ROS1 negatively regulates the imprinting of <i>DOGL4</i> and seed dormancy in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9962-E9970.	7.1	46
23	Regulation of Active DNA Demethylation by an α-Crystallin Domain Protein in Arabidopsis. Molecular Cell, 2014, 55, 361-371.	9.7	44
24	The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci. Genome Biology, 2017, 18, 103.	8.8	44
25	Knock-down of OsDCL2 in Rice Negatively Affects Maintenance of the Endogenous dsRNA Virus, Oryza sativa Endornavirus. Plant and Cell Physiology, 2010, 51, 58-67.	3.1	35
26	Efficient Generation of diRNAs Requires Components in the Posttranscriptional Gene Silencing Pathway. Scientific Reports, 2017, 7, 301.	3.3	34
27	<i>De novo</i> DNA methylation induced by siRNA targeted to endogenous transcribed sequences is geneâ€specific and <i>OsMet1</i> â€independent in rice. Plant Journal, 2008, 56, 539-549.	5.7	29
28	Roles of DEMETER in regulating DNA methylation in vegetative tissues and pathogen resistance. Journal of Integrative Plant Biology, 2021, 63, 691-706.	8.5	26
29	Gene targeting in <i>Arabidopsis</i> via an allâ€nâ€one strategy that uses a translational enhancer to aid Cas9 expression. Plant Biotechnology Journal, 2020, 18, 892-894.	8.3	23
30	Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. Cell Discovery, 2018, 4, 55.	6.7	22
31	SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in <i>Arabidopsis</i> . Nucleic Acids Research, 2017, 45, 181-197.	14.5	21
32	Genomeâ€wide distribution and functions of the AAE complex in epigenetic regulation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 707-722.	8.5	18
33	CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana. Methods in Molecular Biology, 2021, 2200, 121-146.	0.9	14
34	Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis. Cell Reports, 2015, 11, 1160-1167.	6.4	13
35	Gene Targeting Facilitated by Engineered Sequence-Specific Nucleases: Potential Applications for Crop Improvement. Plant and Cell Physiology, 2021, 62, 752-765.	3.1	6
36	Three highly conserved hydrophobic residues in the predicted α2â€helix of rice NLR protein Pit contribute to its localization and immune induction. Plant, Cell and Environment, 2022, , .	5.7	2