## Sandrine Ruffel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5101429/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition. Trends in Plant Science, 2021, 26, 392-406.                                                                                                     | 8.8  | 39        |
| 2  | Genome-wide analysis in response to nitrogen and carbon identifies regulators for root AtNRT2<br>transporters. Plant Physiology, 2021, 186, 696-714.                                                                        | 4.8  | 16        |
| 3  | GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. Journal of Experimental Botany, 2021, 72, 3881-3901.                                               | 4.8  | 27        |
| 4  | Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Current Biology, 2021, 31, 4971-4982.e4.                                                            | 3.9  | 25        |
| 5  | Nitrate in 2020: Thirty Years from Transport to Signaling Networks. Plant Cell, 2020, 32, 2094-2119.                                                                                                                        | 6.6  | 203       |
| 6  | SDG8-Mediated Histone Methylation and RNA Processing Function in the Response to Nitrate Signaling.<br>Plant Physiology, 2020, 182, 215-227.                                                                                | 4.8  | 30        |
| 7  | Identification of Molecular Integrators Shows that Nitrogen Actively Controls the Phosphate Starvation Response in Plants. Plant Cell, 2019, 31, 1171-1184.                                                                 | 6.6  | 135       |
| 8  | The 4th Dimension of Transcriptional Networks: TIME. FASEB Journal, 2019, 33, 343.1.                                                                                                                                        | 0.5  | 0         |
| 9  | Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve <i>trans</i> -Zeatin in Shoots.<br>Plant Cell, 2018, 30, 1243-1257.                                                                                   | 6.6  | 134       |
| 10 | Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and<br>use in plants. Proceedings of the National Academy of Sciences of the United States of America, 2018,<br>115, 6494-6499. | 7.1  | 150       |
| 11 | Nutrient-Related Long-Distance Signals: Common Players and Possible Cross-Talk. Plant and Cell Physiology, 2018, 59, 1723-1732.                                                                                             | 3.1  | 38        |
| 12 | Systemic nutrient signalling: On the road for nitrate. Nature Plants, 2017, 3, 17040.                                                                                                                                       | 9.3  | 20        |
| 13 | Nitrate supply to grapevine rootstocks – new genome-wide findings. Journal of Experimental Botany,<br>2017, 68, 3999-4001.                                                                                                  | 4.8  | 2         |
| 14 | The world according to GARP transcription factors. Current Opinion in Plant Biology, 2017, 39, 159-167.                                                                                                                     | 7.1  | 72        |
| 15 | Longâ€distance nitrate signaling displays cytokinin dependent and independent branches. Journal of<br>Integrative Plant Biology, 2016, 58, 226-229.                                                                         | 8.5  | 57        |
| 16 | Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the <i>Arabidopsis thaliana</i> root. Science Signaling, 2016, 9, rs13.                                            | 3.6  | 81        |
| 17 | AtNICT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nature Communications, 2015, 6, 6274.                                                                                                    | 12.8 | 195       |
| 18 | GeneCloud Reveals Semantic Enrichment in Lists of Gene Descriptions. Molecular Plant, 2015, 8, 971-973.                                                                                                                     | 8.3  | 17        |

SANDRINE RUFFEL

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Systems approach identifies <scp>TGA</scp> 1 and <scp>TGA</scp> 4 transcription factors as important regulatory components of the nitrate response of <i><scp>A</scp>rabidopsis thaliana</i> roots. Plant Journal, 2014, 80, 1-13.                                              | 5.7 | 247       |
| 20 | Signal interactions in the regulation of root nitrate uptake. Journal of Experimental Botany, 2014, 65, 5509-5517.                                                                                                                                                              | 4.8 | 81        |
| 21 | Finding a nitrogen niche: a systems integration of local and systemic nitrogen signalling in plants.<br>Journal of Experimental Botany, 2014, 65, 5601-5610.                                                                                                                    | 4.8 | 36        |
| 22 | TARGET: A Transient Transformation System for Genome-Wide Transcription Factor Target Discovery.<br>Molecular Plant, 2013, 6, 978-980.                                                                                                                                          | 8.3 | 73        |
| 23 | RootScape: A Landmark-Based System for Rapid Screening of Root Architecture in Arabidopsis  Â. Plant<br>Physiology, 2013, 161, 1086-1096.                                                                                                                                       | 4.8 | 59        |
| 24 | A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 2011, 16, 178-182.                                                                                                                                                                   | 8.8 | 255       |
| 25 | Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct<br>systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the<br>United States of America, 2011, 108, 18524-18529.                  | 7.1 | 333       |
| 26 | HIGH NITROGEN INSENSITIVE 9 (HNI9)-mediated systemic repression of root NO <sub>3</sub><br><sup>â^²</sup> uptake is associated with changes in histone methylation. Proceedings of the National<br>Academy of Sciences of the United States of America, 2011, 108, 13329-13334. | 7.1 | 108       |
| 27 | Adaptation of <i>Medicago truncatula</i> to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytologist, 2010, 185, 817-828.                                                                                                        | 7.3 | 140       |
| 28 | A Systems View of Responses to Nutritional Cues in Arabidopsis: Toward a Paradigm Shift for<br>Predictive Network Modeling. Plant Physiology, 2010, 152, 445-452.                                                                                                               | 4.8 | 34        |
| 29 | Systemic Signaling of the Plant Nitrogen Status Triggers Specific Transcriptome Responses Depending<br>on the Nitrogen Source in <i>Medicago truncatula</i> Â Â. Plant Physiology, 2008, 146, 2020-2035.                                                                        | 4.8 | 136       |
| 30 | Simultaneous mutations in translation initiation factors elF4E and elF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. Journal of General Virology, 2006, 87, 2089-2098.                                                                         | 2.9 | 140       |
| 31 | Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene, 2004, 338, 209-216.                                                                                                            | 2.2 | 30        |
| 32 | A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant Journal, 2002, 32, 1067-1075.                                                                                                            | 5.7 | 310       |