Pratim Kumar Chattaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5100910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fischer and Schrock carbene complexes in the light of global and local electrophilicityâ€based descriptors. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	2
2	Variation in electrophilicity on electronic excitation. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	9
3	Electrophilicity index revisited. Journal of Computational Chemistry, 2023, 44, 278-297.	3.3	28
4	Possible C-F bond activation by B(C6F5)3/lutidine and Al(C6F5)3/lutidine frustrated Lewis pair: an in silico study. Journal of Chemical Sciences, 2022, 134, 1.	1.5	9
5	Stabilisation of Li(0)-Li(0) bond by normal and mesoionic carbenes and electride characteristics of the complexes. Molecular Physics, 2022, 120, .	1.7	4
6	Activation of Small Molecules and Hydrogenation of CO2 Catalyzed by Frustrated Lewis Pairs. Catalysts, 2022, 12, 201.	3.5	19
7	<scp>CSiGaAl₂</scp> ^{â^'/0} and <scp>CGeGaAl₂</scp> ^{â^'/0} hav planar tetracoordinate carbon atoms in their global minimum energy structures. Journal of Computational Chemistry, 2022, 43, 894-905.	ving 3.3	14
8	<scp>Li₄EPc</scp> : A metalloâ€organic electride comprising metalâ€nitrogen bonds. International Journal of Quantum Chemistry, 2022, 122, .	2.0	2
9	Revisiting the trapping of noble gases (He–Kr) by the triatomic H3+ and Li3+ species: a density functional reactivity theory study. Journal of Molecular Modeling, 2022, 28, 122.	1.8	2
10	Small molecule activation and dehydrogenation of an amine–borane system using frustrated Lewis pairs. Structural Chemistry, 2022, 33, 1853-1865.	2.0	9
11	Controlling Tunneling Oscillation and Quantum Localization in an Asymmetric Double-Well Potential: A Bohmian Perspective. Journal of Physical Chemistry A, 2022, 126, 4834-4847.	2.5	1
12	Can superalkalis and superhalogens improve the efficacy of redox reactions?. Chemical Physics Letters, 2021, 762, 138131.	2.6	2
13	Density functional theory studies of boron clusters with exotic properties in bonding, aromaticity and reactivity. Physical Chemistry Chemical Physics, 2021, 23, 24118-24124.	2.8	11
14	Conceptual density functional theory and aromaticity. , 2021, , 285-319.		1
15	Chemical reactivity from a conceptual density functional theory perspective. Journal of the Indian Chemical Society, 2021, 98, 100008.	2.8	15
16	Possible effects of fluxionality of a cavitand on its catalytic activity through confinement. Physical Chemistry Chemical Physics, 2021, 23, 15817-15834.	2.8	5
17	Reactivity Dynamics. Journal of Physical Chemistry A, 2021, 125, 2051-2060.	2.5	34
18	Editorial: "Changing the Perspective of the Noble Gas Reactivity― Frontiers in Chemistry, 2021, 9, 658318.	3.6	1

#	Article	IF	CITATIONS
19	Comparison Between Electride Characteristics of Li3@B40 and Li3@C60. Frontiers in Chemistry, 2021, 9, 638581.	3.6	11
20	Determination of stable structure of a cluster using convolutional neural network and particle swarm optimization. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	14
21	Does confinement alter the ionization energy and electron affinity of atoms?. European Physical Journal D, 2021, 75, 1.	1.3	5
22	Electride characteristics of M2(η5-E5)2 (M = Be, Mg; E = Sb5-). Structural Chemistry, 2021, 32, 2107-2114.	2.0	5
23	H2 adsorption by noble gas insertion compounds: A computational study. Journal of the Indian Chemical Society, 2021, 98, 100060.	2.8	1
24	Local Temperature as a Chemical Reactivity Descriptor. Journal of Physical Chemistry Letters, 2021, 12, 5623-5630.	4.6	17
25	Substituent Effects on Electride Characteristics of Mg ₂ (η ⁵ -C ₅ H ₅) ₂ : A Theoretical Study. Journal of Physical Chemistry A, 2021, 125, 6207-6220.	2.5	10
26	Biological Activity, Physical Properties, and Toxicity. International Journal of Quantitative Structure-Property Relationships, 2021, 6, 25-34.	0.5	1
27	Conceptual DFT based electronic structure principles in a dynamical context. Journal of the Indian Chemical Society, 2021, 98, 100098.	2.8	10
28	A computational investigation of the activation of allene (H2CÂ=ÂCÂ=ÂCHR; RÂ=ÂH, CH3, CN) by a frustrated phosphorous/boron Lewis pair. Chemical Physics Letters, 2021, 774, 138623.	2.6	14
29	Atomic Clusters: Structure, Reactivity, Bonding, and Dynamics. Frontiers in Chemistry, 2021, 9, 730548.	3.6	14
30	In Silico Studies on Selected Neutral Molecules, CGa2Ge2, CAlGaGe2, and CSiGa2Ge Containing Planar Tetracoordinate Carbon. Atoms, 2021, 9, 65.	1.6	16
31	Conceptual density functional theory based electronic structure principles. Chemical Science, 2021, 12, 6264-6279.	7.4	96
32	Self-healable functional polymers based on Diels–Alder †click chemistry' involving substituted furan and triazolinedione derivatives: a simple and very fast approach. Polymer Chemistry, 2021, 12, 6283-6290.	3.9	4
33	Effect of confinement on the behavior of superhalogen and superalkali. Computational and Theoretical Chemistry, 2021, 1206, 113491.	2.5	2
34	Aromatic Clusters as Potential Hydrogen Storage Materials. Frontiers in Energy Research, 2021, 9, .	2.3	3
35	XNgNSi (X = HCC, F; Ng = Kr, Xe, Rn): A New Class of Metastable Insertion Compounds Containing Ng–C/F and Ng–N Bonds and Possible Isomerization therein. Journal of Physical Chemistry A, 2021, , .	2.5	2
36	Quantitative structureâ€ŧoxicity relationship: An "in silico study―using electrophilicity and hydrophobicity as descriptors. International Journal of Quantum Chemistry, 2020, 120, e26097.	2.0	17

#	Article	IF	CITATIONS
37	Filling the void: controlled donor–acceptor interaction facilitates the formation of an M–M single bond in the zero oxidation state of M (M = Zn, Cd, Hg). Dalton Transactions, 2020, 49, 1056-1064.	3.3	19
38	Ligand stabilized transient "MNC―and its influence on MNC → MCN isomerization process: a computational study (M = Cu, Ag, and Au). Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	3
39	Towards understanding metal aromaticity in different spin states: A density functional theory and information-theoretic approach analysis. Chemical Physics Letters, 2020, 761, 138065.	2.6	13
40	Electride Characteristics of Some Binuclear Sandwich Complexes of Alkaline Earth Metals, M ₂ (η ⁵ -L) ₂ (M = Be, Mg; L =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Te	d (C _{ 2.5}	5H <sul< td=""></sul<>
41	Can a decrease in anti-aromaticity increase the dihydrogen activation ability of a frustrated phosphorous/borane Lewis pair?: a DFT study. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	10
42	Changes in Structure and Reactivity of Ng2 Encapsulated in Fullerenes: A Density Functional Theory Study. Frontiers in Chemistry, 2020, 8, 566.	3.6	7
43	Noble Gas Binding Ability of an Au(I) Cation Stabilized by a Frustrated Lewis Pair: A DFT Study. Frontiers in Chemistry, 2020, 8, 616.	3.6	4
44	Intriguing structural, bonding and reactivity features in some beryllium containing complexes. Physical Chemistry Chemical Physics, 2020, 22, 27476-27495.	2.8	10
45	Fast "ES-Click―Reaction Involving Furfuryl and Triazolinedione Functionalities toward Designing a Healable Polymethacrylate. Macromolecules, 2020, 53, 8313-8323.	4.8	11
46	Effect of substitution on the bonding in He dimer confined within dodecahedrane: A computational study. Journal of Computational Chemistry, 2020, 41, 2398-2405.	3.3	5
47	Cycloaddition Reactions between H ₂ C = CHR (R = H, CN, CH ₃) and a Cyclic P/B Frustrated Lewis Pair: A DFT Study. Journal of Physical Chemistry A, 2020, 124, 4455-4462.	2.5	18
48	Low Operating Voltage Organic Field-Effect Transistors with Gelatin as a Moisture-Induced Ionic Dielectric Layer: The Issues of High Carrier Mobility. ACS Applied Materials & Interfaces, 2020, 12, 19727-19736.	8.0	31
49	Tribute to Paul Geerlings. Journal of Physical Chemistry A, 2020, 124, 5061-5062.	2.5	Ο
50	Integrating firefly algorithm with density functional theory for global optimization of Al42â^' clusters. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	7
51	Flexibility Induced Encapsulation of Ultrafine Palladium Nanoparticles into Organic Cages for Tsuji–Trost Allylation. ACS Applied Materials & Interfaces, 2020, 12, 8539-8546.	8.0	17
52	Conceptual density functional theory: status, prospects, issues. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	249
53	Metal–Organic Frameworks of Cu(II) Constructed from Functionalized Ligands for High Capacity H ₂ and CO ₂ Gas Adsorption and Catalytic Studies. Inorganic Chemistry, 2020, 59, 1810-1822.	4.0	25
54	Encapsulation of Mg ₂ inside a C ₆₀ cage forms an electride. Journal of Computational Chemistry, 2020, 41, 1645-1653.	3.3	20

#	Article	IF	CITATIONS
55	Two Closely Related Zn(II)-MOFs for Their Large Difference in CO ₂ Uptake Capacities and Selective CO ₂ Sorption. Inorganic Chemistry, 2020, 59, 7056-7066.	4.0	35
56	A conceptual DFT analysis of the plausible mechanism of some pericyclic reactions. Structural Chemistry, 2020, 31, 1745-1756.	2.0	8
57	Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity. Methods in Pharmacology and Toxicology, 2020, , 661-679.	0.2	5
58	How Far Can One Push the Noble Gases Towards Bonding?: A Personal Account. Molecules, 2019, 24, 2933.	3.8	34
59	A new healable polymer material based on ultrafast Diels–Alder â€~click' chemistry using triazolinedione and fluorescent anthracyl derivatives: a mechanistic approach. Polymer Chemistry, 2019, 10, 5070-5079.	3.9	21
60	Modified Particle Swarm Optimization Algorithms for the Generation of Stable Structures of Carbon Clusters, Cn (n = 3–6, 10). Frontiers in Chemistry, 2019, 7, 485.	3.6	28
61	Is It Possible To Determine Oxidation States for Atoms in Molecules Using Density-Based Quantities? An Information-Theoretic Approach and Conceptual Density Functional Theory Study. Journal of Physical Chemistry A, 2019, 123, 6751-6760.	2.5	43
62	A Complex Containing Four Magnesium Atoms and Two Mg–Mg Bonds Behaving as an Electride. European Journal of Inorganic Chemistry, 2019, 2019, 4105-4111.	2.0	15
63	A theoretical investigation on boron–ligand cooperation to activate molecular hydrogen by a frustrated Lewis pair and subsequent reduction of carbon dioxide. Physical Chemistry Chemical Physics, 2019, 21, 21267-21277.	2.8	27
64	Nobleâ€Noble Strong Union: Gold at Its Best to Make a Bond with a Noble Gas Atom. ChemistryOpen, 2019, 8, 173-187.	1.9	42
65	Microsolvation of lithium–phosphorus double helix: a DFT study. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	2
66	Bonding, Reactivity, and Dynamics in Confined Systems. Journal of Physical Chemistry A, 2019, 123, 4513-4531.	2.5	48
67	Unprecedented Bonding Situation in Viable E ₂ (NHB ^{Me}) ₂ (E=Be,) Tj ETQq1 Forms a Single Eâ [^] E Covalent Bond. Angewandte Chemie, 2019, 131, 8460-8465.	1 0.7843 2.0	14 rgBT /O\ 22
68	Unprecedented Bonding Situation in Viable E ₂ (NHB ^{Me}) ₂ (E=Be,) Tj ETQqO Forms a Single Eâ^E Covalent Bond. Angewandte Chemie - International Edition, 2019, 58, 8372-8377.	0 0 rgBT / 13.8	Overlock 1 62
69	An Intramolecular Charge Transfer Induced Fluorescent Chemosensor for Selective Detection of Mercury (II) and its Selfâ€Turnâ€On Inside Live Cells at Physiological pH. ChemistrySelect, 2019, 4, 4810-4819.	1.5	11
70	An In Silico QSAR Model Study Using Electrophilicity as a Possible Descriptor Against T. Brucei. International Journal of Chemoinformatics and Chemical Engineering, 2019, 8, 57-68.	0.1	3
71	A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	138
72	Donor–Acceptor vs Electron-Shared Bonding: Triatomic Si _{<i>n</i>} C _{3–<i>n</i>} (<i>n</i> â‰ı3) Clusters Stabilized by Cyclic Alkyl(amino) Carbene. Journal of Physical Chemistry A, 2019, 123, 10764-10771.	2.5	5

#	Article	IF	CITATIONS
73	Hydrophobicity versus electrophilicity: A new protocol toward quantitative structure–toxicity relationship. Chemical Biology and Drug Design, 2019, 93, 1083-1095.	3.2	18
74	A computational study on hydrogenation of CO2, catalyzed by a bridged B/N frustrated Lewis pair. Structural Chemistry, 2019, 30, 1067-1077.	2.0	23
75	Frontispiece: Stable NCNgNSi (Ng=Kr, Xe, Rn) Compounds with Covalently Bound Câ€Ngâ€N Unit: Possible Isomerization of NCNSi through the Release of the Noble Gas Atom. Chemistry - A European Journal, 2018, 24, .	3.3	Ο
76	Fixation of nitrous oxide (N ₂ O) by 1, 4, 2, 5â€diazadiborinine: A DFT study. International Journal of Quantum Chemistry, 2018, 118, e25593.	2.0	14
77	Diagrams for comprehensive molecular orbital-based chemical reaction analyses: reactive orbital energy diagrams. Physical Chemistry Chemical Physics, 2018, 20, 14211-14222.	2.8	8
78	Planar pentacoordinate carbon in CGa ₅ ⁺ derivatives. Physical Chemistry Chemical Physics, 2018, 20, 12350-12355.	2.8	41
79	Tunneling and quantum localization in chaosâ€driven symmetric triple well potential: An approach using quantum theory of motion. International Journal of Quantum Chemistry, 2018, 118, e25531.	2.0	3
80	Reactions involving some gas molecules through sequestration on Al ₁₂ Be cluster: An electron density based study. Journal of Computational Chemistry, 2018, 39, 535-545.	3.3	5
81	Host–guest interactions between octa acid and cations/nucleobases. Journal of Computational Chemistry, 2018, 39, 161-175.	3.3	12
82	Stable NCNgNSi (Ng=Kr, Xe, Rn) Compounds with Covalently Bound Câ€Ngâ€N Unit: Possible Isomerization of NCNSi through the Release of the Noble Gas Atom. Chemistry - A European Journal, 2018, 24, 2879-2887.	3.3	20
83	Boron Nanowheels with Axles Containing Noble Gas Atoms: Viable Noble Gas Bound M©B ₁₀ ^{â~'} Clusters (M=Nb, Ta). Chemistry - A European Journal, 2018, 24, 3590-3598.	3.3	19
84	Noble gas encapsulated B ₄₀ cage. Physical Chemistry Chemical Physics, 2018, 20, 1953-1963.	2.8	41
85	A possible reason behind the initial formation of pentagonal dodecahedron cavities in sl-methane hydrate nucleation: A DFT study. Chemical Physics Letters, 2018, 691, 415-420.	2.6	3
86	Confinement induced thermodynamic and kinetic facilitation of some Diels–Alder reactions inside a CB[7] cavitand. Journal of Computational Chemistry, 2018, 39, 151-160.	3.3	34
87	HNgBeF ₃ (Ng = Arâ€Rn): Superhalogenâ€supported noble gas insertion compounds. International Journal of Quantum Chemistry, 2018, 118, e25499.	2.0	15
88	Hydrogen Storage in All-Metal and Nonmetal Aromatic Clusters. , 2018, , 329-362.		0
89	Adsorption of Molecular Hydrogen on Lithium–Phosphorus Double-Helices. Journal of Physical Chemistry C, 2018, 122, 27941-27946.	3.1	7
90	Activation of Small Molecules (H ₂ , CO ₂ , N ₂ O, CH ₄ ,) Tj ETQq	0 0 0 rgBT 3.5	/Overlock 1 13

Omega, 2018, 3, 17199-17211.

#	Article	IF	CITATIONS
91	Stabilization of Boron–Boron Triple Bonds by Mesoionic Carbenes. ACS Omega, 2018, 3, 13720-13730.	3.5	17
92	Analyzing torquoselectivity in a series of unusual ringâ€opening reactions through bond reactivity indices and the adaptive natural density partitioning method. International Journal of Quantum Chemistry, 2018, 118, e25778.	2.0	5
93	A (T–P) phase diagram for the adsorption/desorption of carbon dioxide and hydrogen in a Cu(II)-MOF. Polyhedron, 2018, 153, 254-260.	2.2	7
94	Exohedral complexation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mi mathvariant="normal">B<mml:mrow><mml:mn>39</mml:mn></mml:mrow><mml:mo>-</mml:mo>with ECpâ^—+ half-sandwich complexes (E Si, Ge, Sn, Pb): A DFT study. Computational and Theoretical Chamietry, 2018, 1140, 49-55</mml:mi </mml:msubsup></mml:mrow></mml:math>	m 2na tmsub	s u p>
95	Noble Gas Inserted Metal Acetylides (Metal = Cu, Ag, Au). Journal of Physical Chemistry A, 2018, 122, 7391-7401.	2.5	25
96	A machine learning technique toward generating minimum energy structures of small boron clusters. International Journal of Quantum Chemistry, 2018, 118, e25672.	2.0	11
97	Confinement induced catalytic activity in a Diels-Alder reaction: comparison among various CB[n], n = 6–8, cavitands. Journal of Molecular Modeling, 2018, 24, 228.	1.8	7
98	Cyanide–isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal =) Tj ETQq	0.0.0 rgBT 2.8]Qverlock 1
99	Aromaticity in the Light of Magnetic Criteria. Current Organic Chemistry, 2018, 21, .	1.6	0
100	Ligandâ€Supported E ₃ Clusters (E=Si–Sn). Chemistry - A European Journal, 2017, 23, 7463-7473.	3.3	11
101	NgMCp ⁺ : Noble Gas Bound Half-Sandwich Complexes (Ng = He–Rn, M = Be–Ba, and Cp =) Tj ETG	Qg1 1 0.78	84314 rgBT
102	Binding of Small Gas Molecules by Metal–Bipyridyl Monocationic Complexes (Metal = Cu, Ag, Au) and Possible Bond Activations Therein. Journal of Physical Chemistry A, 2017, 121, 3803-3817.	2.5	16
103	Aromaticity and antiaromaticity of substituted fulvene derivatives: perspectives from the information-theoretic approach in density functional reactivity theory. Physical Chemistry Chemical Physics, 2017, 19, 18635-18645.	2.8	43
104	Does Confinement Always Lead to Thermodynamically and/or Kinetically Favorable Reactions? A Case Study using Diels–Alder Reactions within ExBox ⁺⁴ and CB[7]. ChemPhysChem, 2017, 18, 2162-2170.	2.1	24
105	Frontispiece: Ligand‣upported E ₃ Clusters (E=Si–Sn). Chemistry - A European Journal, 2017, 23, .	3.3	Ο
106	Modeling of 1-D Nanowires and analyzing their Hydrogen and Noble Gas Binding Ability. Journal of Chemical Sciences, 2017, 129, 849-858.	1.5	10
107	A Spinning Umbrella: Carbon Monoxide and Dinitrogen Bound MB ₁₂ [–] Clusters (M = Co, Rh, Ir). Journal of Physical Chemistry A, 2017, 121, 2971-2979.	2.5	31
108	The strongest CO binding and the highest C–O stretching frequency. Physical Chemistry Chemical Physics, 2017, 19, 2286-2293.	2.8	19

#	Article	IF	CITATIONS
109	Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties. Journal of Physics Condensed Matter, 2017, 29, 425201.	1.8	6
110	MNgCCH (M = Cu, Ag, Au; Ng = Xe, Rn): The First Set of Compounds with M–Ng–C Bonding Motif. Journal of Physical Chemistry A, 2017, 121, 6491-6499.	2.5	27
111	Change in optoelectronic properties of ExBox ⁺⁴ on functionalization and guest encapsulation. Physical Chemistry Chemical Physics, 2017, 19, 23373-23385.	2.8	10
112	Endohedral gas adsorption by cucurbit[7]uril: a theoretical study. Physical Chemistry Chemical Physics, 2017, 19, 24448-24452.	2.8	13
113	Does Confinement Always Lead to Thermodynamically and/or Kinetically Favorable Reactions? A Case Study using Diels-Alder Reactions within ExBox+4 and CB[7]. ChemPhysChem, 2017, 18, 2136-2136.	2.1	0
114	Finite temperature grand canonical ensemble study of the minimum electrophilicity principle. Journal of Chemical Physics, 2017, 147, 124103.	3.0	33
115	A Cu(ii)-MOF capable of fixing CO2 from air and showing high capacity H2 and CO2 adsorption. Chemical Communications, 2017, 53, 13371-13374.	4.1	57
116	Role of Lithium Decoration on Hydrogen Storage Potential. Journal of the Mexican Chemical Society, 2017, 56, .	0.6	4
117	Quantitative Structure-Activity/Property/Toxicity Relationships through Conceptual Density Functional Theory-Based Reactivity Descriptors. , 2017, , 1517-1572.		7
118	Favorable Direction in a Chemical Reaction Through the Maximum Hardness Principle. Journal of the Mexican Chemical Society, 2017, 57, .	0.6	0
119	Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions. Molecules, 2016, 21, 1477.	3.8	7
120	A noble interaction: An assessment of noble gas binding ability of metal oxides (metal = Cu, Ag, Au). International Journal of Quantum Chemistry, 2016, 116, 1016-1024.	2.0	26
121	Structure and stability of noble gas bound compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br). Journa Computational Chemistry, 2016, 37, 226-236.	l of 3.3	28
122	Solution of the "Classical―Schrödinger equation for a driven symmetric triple well: A comparison with its classical counterpart. International Journal of Quantum Chemistry, 2016, 116, 1224-1243.	2.0	8
123	Possible sequestration of polar gas molecules by superhalogen supported aluminum nitride nanoflakes. Journal of Molecular Modeling, 2016, 22, 271.	1.8	3
124	Ring Expansion of Donor–Acceptor Cyclopropane via Substituent Controlled Selective <i>N</i> -Transfer of Oxaziridine: Synthetic and Mechanistic Insights. Organic Letters, 2016, 18, 4940-4943.	4.6	73
125	Structure, stability, and nature of bonding in carbon monoxide bound complexes (E = group 14 element;)	Ţj _. ETQq1] 0.784314]3
126	Noble gas supported B ₃ ⁺ cluster: formation of strong covalent noble	3.6	40

gas–boron bonds. RSC Advances, 2016, 6, 78611-78620.

#	Article	IF	CITATIONS
127	A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au). Journal of Chemical Sciences, 2016, 128, 1537-1548.	1.5	27
128	Noble gas bound beryllium chromate and beryllium hydrogen phosphate: a comparison with noble gas bound beryllium oxide. RSC Advances, 2016, 6, 92786-92794.	3.6	20
129	Sequestration and Activation of Small Gas Molecules on BN-Flakes and the Effect of Various Metal Oxide Molecules therein. Journal of Physical Chemistry C, 2016, 120, 27782-27799.	3.1	9
130	Noble Gas Binding Ability of Metalâ€Bipyridine Monocationic Complexes (Metal=Cu, Ag, Au): A Computational Study. ChemistrySelect, 2016, 1, 5842-5849.	1.5	18
131	Encapsulation of small gas molecules and rare gas atoms inside the octa acid cavitand. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	29
132	Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes. Physical Chemistry Chemical Physics, 2016, 18, 18811-18827.	2.8	26
133	Selectivity in Gas Adsorption by Molecular Cucurbit[6]uril. Journal of Physical Chemistry C, 2016, 120, 13911-13921.	3.1	49
134	How strong are the metallocene–metallocene interactions? Cases of ferrocene, ruthenocene, and osmocene. Physical Chemistry Chemical Physics, 2016, 18, 550-556.	2.8	34
135	Structure and bonding of IrB ₁₂ ^{â^'} : converting a rigid boron B ₁₂ platelet to a Wankel motor. RSC Advances, 2016, 6, 27177-27182.	3.6	67
136	Viability of aromatic all-pnictogen anions. Physical Chemistry Chemical Physics, 2016, 18, 11738-11745.	2.8	9
137	Ϊƒ-Aromatic cyclic M ₃ ⁺ (M = Cu, Ag, Au) clusters and their complexation with dimethyl imidazol-2-ylidene, pyridine, isoxazole, furan, noble gases and carbon monoxide. Physical Chemistry Chemical Physics, 2016, 18, 11661-11676.	2.8	49
138	Dynamical behavior of Borospherene: A Nanobubble. Scientific Reports, 2015, 5, 11287.	3.3	81
139	Fermi accelerator: A new insight from quantum theory of motion. International Journal of Quantum Chemistry, 2015, 115, 1733-1738.	2.0	4
140	Three-dimensional networks containing rectangular Sr4and Ba4units: Synthesis, structure, bonding, and potential application for Ne gas separation. International Journal of Quantum Chemistry, 2015, 115, 1501-1510.	2.0	6
141	Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO ₄ ,) Tj ETQq1 1 0.78431	4 rgBT /O\ 2.5	verlock 10 Tf
142	Orbital free DFT versus single density equation: a perspective through quantum domain behavior of a classically chaotic system. Physical Chemistry Chemical Physics, 2015, 17, 31516-31529.	2.8	13
143	Quantitative Structure-Activity/Property/Toxicity Relationships through Conceptual Density Functional Theory-Based Reactivity Descriptors. Advances in Chemical and Materials Engineering Book Series, 2015, , 123-179.	0.3	1
144	Cucurbit[6]uril: A Possible Host for Noble Gas Atoms. Journal of Physical Chemistry B, 2015, 119, 10962-10974.	2.6	50

PRATIM KUMAR CHATTARAJ

#	Article	IF	CITATIONS
145	Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube. Chemical Physics Letters, 2015, 621, 29-34.	2.6	33
146	Unique bonding pattern and resulting bond stretch isomerism in Be32â^'. International Journal of Quantum Chemistry, 2015, 115, 426-433.	2.0	8
147	Scaling properties of information-theoretic quantities in density functional reactivity theory. Physical Chemistry Chemical Physics, 2015, 17, 4977-4988.	2.8	65
148	In Quest of a Superhalogen Supported Covalent Bond Involving a Noble Gas Atom. Journal of Physical Chemistry A, 2015, 119, 3064-3074.	2.5	23
149	Interaction of BN- and BP-doped graphene nanoflakes with some representative neutral molecules and anions. Molecular Physics, 2015, 113, 2916-2929.	1.7	0
150	Reactivity dynamics of a confined molecule in presence of an external magnetic field. International Journal of Quantum Chemistry, 2015, 115, 144-157.	2.0	26
151	Exploring the Nature of Silicon-Noble Gas Bonds in H3SiNgNSi and HSiNgNSi Compounds (Ng = Xe, Rn). International Journal of Molecular Sciences, 2015, 16, 6402-6418.	4.1	37
152	On the stability of noble gas bound 1-tris(pyrazolyl)borate beryllium and magnesium complexes. New Journal of Chemistry, 2015, 39, 6778-6786.	2.8	27
153	A coupledâ€cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au). Journal of Computational Chemistry, 2015, 36, 2168-2176.	3.3	41
154	Hydrogen trapping potential of (HF)m (m=1–8) and (H2O)n (n=1–10) clusters. Computational and Theoretical Chemistry, 2015, 1071, 18-26.	2.5	8
155	Analyzing torquoselectivity in electrocyclic ring opening reactions of trans-3,4-dimethylcyclobutene and 3-formylcyclobutene through electronic structure principles. Physical Chemistry Chemical Physics, 2015, 17, 23104-23111.	2.8	17
156	Metastable behavior of noble gas inserted tin and lead fluorides. Physical Chemistry Chemical Physics, 2015, 17, 972-982.	2.8	49
157	Host–Guest Interactions in ExBox ⁴⁺ . ChemPhysChem, 2014, 15, 4108-4116.	2.1	19
158	Bohmian trajectory from the "classical―Schrödinger equation. Chaos, 2014, 24, 043123.	2.5	9
159	Ab Initio Study on the Stability of Ng _{<i>n</i>} Be ₂ N ₂ , Ng _{<i>n</i>} Be ₃ N ₂ and NgBeSiN ₂ Clusters. ChemPhysChem, 2014, 15, 2618-2625.	2.1	35
160	Guest–host interaction in an aza crown analog. International Journal of Quantum Chemistry, 2014, 114, 708-719.	2.0	6
161	Reactivity dynamics of confined atoms in the presence of an external magnetic field. European Physical Journal D, 2014, 68, 1.	1.3	20
162	DFT study on the ground state and excited state intramolecular proton transfer of propargyl arm containing Schiff bases in solution and gas phases. Computational and Theoretical Chemistry, 2014, 1028, 19-26.	2.5	20

#	Article	IF	CITATIONS
163	Confinement of (HF)2 in C (n= 60, 70, 80, 90) cages. Chemical Physics Letters, 2014, 616-617, 49-54.	2.6	12
164	Gas storage potential of ExBox ⁴⁺ and its Li-decorated derivative. Physical Chemistry Chemical Physics, 2014, 16, 21964-21979.	2.8	11
165	Noble gas encapsulation: clathrate hydrates and their HF doped analogues. Physical Chemistry Chemical Physics, 2014, 16, 17943-17954.	2.8	31
166	Metal (copper) segregation in magmas. Lithos, 2014, 208-209, 462-470.	1.4	8
167	B ₁₈ ^{2â^} : a quasi-planar bowl member of the Wankel motor family. Chemical Communications, 2014, 50, 8140-8143.	4.1	107
168	In Quest of Strong Be–Ng Bonds among the Neutral Ng–Be Complexes. Journal of Physical Chemistry A, 2014, 118, 487-494.	2.5	68
169	Stability of Nobleâ€Gasâ€Bound SiH ₃ ⁺ Clusters. ChemPhysChem, 2014, 15, 3554-356	4.2.1	36
170	The inorganic analogues of carbo -benzene. Chemical Physics Letters, 2014, 610-611, 209-212.	2.6	9
171	Confinement induced binding of noble gas atoms. Journal of Chemical Physics, 2014, 140, 164306.	3.0	61
172	Chemical reactivity through structure-stability landscape. International Journal of Quantum Chemistry, 2014, 114, 1421-1429.	2.0	16
173	Movement of Ng 2 molecules confined in a C 60 cage: An ab initio molecular dynamics study. Chemical Physics Letters, 2014, 610-611, 351-356.	2.6	39
174	Stability and structural dynamics of clusters. Chemical Physics Letters, 2014, 593, 128-131.	2.6	13
175	Carbo-Cages: A Computational Study. Journal of Organic Chemistry, 2014, 79, 5463-5470.	3.2	13
176	Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study. Chemical Physics, 2014, 438, 7-15.	1.9	7
177	Attractive Xe–Li interaction in Li-decorated clusters. Computational and Theoretical Chemistry, 2013, 1021, 62-69.	2.5	26
178	Methane hydrates and their HF doped analogues. Chemical Physics Letters, 2013, 578, 110-114.	2.6	8
179	Cucurbiturils as promising hydrogen storage materials: a case study of cucurbit[7]uril. New Journal of Chemistry, 2013, 37, 2492.	2.8	30
180	A one-pot Garratt–Braverman cyclization and Scholl oxidation route to acene–helicene hybrids. RSC Advances, 2013, 3, 19844.	3.6	19

#	Article	IF	CITATIONS
181	Concurrent loss of aromaticity and onset of superexchange in Mg3Na2 with an increasing Na–Mg3 distance. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	5
182	Redox and Lewis acid–base activities through an electronegativity-hardness landscape diagram. Journal of Molecular Modeling, 2013, 19, 4857-4864.	1.8	13
183	C ₅ Li ₇ ⁺ and O ₂ Li ₅ ⁺ as Nobleâ€Gasâ€Trapping Agents. Chemistry - A European Journal, 2013, 19, 2322-2329.	3.3	49
184	Effect of microsolvation on hydrogen trapping potential of metal ions. Chemical Physics, 2013, 415, 256-268.	1.9	2
185	Molecular reactivity dynamics in a confined environment. Physical Chemistry Chemical Physics, 2013, 15, 5588.	2.8	11
186	Biological Activity and Toxicity: A Conceptual DFT Approach. Structure and Bonding, 2013, , 143-179.	1.0	29
187	Possibility of Having HF-Doped Hydrogen Hydrates. Journal of Physical Chemistry C, 2013, 117, 11625-11634.	3.1	14
188	Density dynamics in some quantum systems. International Journal of Quantum Chemistry, 2013, 113, 1747-1771.	2.0	7
189	Local hardness equalization and the principle of maximum hardness. Journal of Chemical Physics, 2013, 138, 214103.	3.0	23
190	On the Validity of the Maximum Hardness Principle and the Minimum Electrophilicity Principle during Chemical Reactions. Journal of Physical Chemistry A, 2013, 117, 1843-1852.	2.5	152
191	Structure and Stability of (NG) _{<i>n</i>} CN ₃ Be ₃ ⁺ Clusters and Comparison with (NG)BeY ^{0/+} . ChemPhysChem, 2013, 14, 2511-2517.	2.1	41
192	Electrophilicity kernel and its hierarchy through softness in conceptual density functional theory. International Journal of Quantum Chemistry, 2013, 113, 2163-2171.	2.0	16
193	Analysis of the structure, bonding, aromaticity and existence of possible bond-stretch isomerism in trigonal anionic metal clusters, X[sub 3][sup â^²](X = Be,Mg,Ca). , 2012, , .		2
194	Heterotrimetallic compounds containing Mo–M–Li [M = K, Rb and Cs] clusters: synthesis, structure, bonding, aromaticity and theoretical investigations of Li2M2 [M = K and Rb] and Cs4 rings. Physical Chemistry Chemical Physics, 2012, 14, 15579.	2.8	11
195	Pyrrole-Based New Diphosphines: Pd and Ni Complexes Bearing the PNP Pincer Ligand. Inorganic Chemistry, 2012, 51, 12527-12539.	4.0	60
196	A tug-of-war between electronic excitation and confinement in a dynamical context. Physical Chemistry Chemical Physics, 2012, 14, 1716-1727.	2.8	40
197	A (<i>T</i> – <i>P</i>) Phase Diagram of Hydrogen Storage on (N ₄ C ₃ H) ₆ Li ₆ . Journal of Physical Chemistry A, 2012, 116, 3259-3266.	2.5	30
198	Some novel molecular frameworks involving representative elements. Physical Chemistry Chemical Physics, 2012, 14, 14784.	2.8	10

#	Article	IF	CITATIONS
199	Understanding local electrophilicity/nucleophilicity activation through a single reactivity difference index. Organic and Biomolecular Chemistry, 2012, 10, 2855.	2.8	68
200	The hydrogen trapping potential of some Li-doped star-like clusters and super-alkali systems. Physical Chemistry Chemical Physics, 2012, 14, 10345.	2.8	71
201	Toward analyzing some neutral and cationic boron–lithium clusters (B <i>_x</i> Li <i>_y x</i> = 2–6; <i>y</i> = 1, 2) as effective hydrogen storage materials: A conceptual density functional study. International Journal of Quantum Chemistry, 2012, 112. 695-702.	2.0	22
202	Comment on "Ruling Out Any Electrophilicity Equalization Principle― Journal of Physical Chemistry A, 2012, 116, 790-791.	2.5	16
203	The Woodward–Hoffmann Rules Reinterpreted by Conceptual Density Functional Theory. Accounts of Chemical Research, 2012, 45, 683-695.	15.6	156
204	Fitness landscapes in natural rocks system evolution: A conceptual DFT treatment#. Journal of Chemical Sciences, 2012, 124, 29-34.	1.5	7
205	Pd(II)–N-heterocyclic carbene complexes of 2,6-bis{N-methyl-(imidazolium/benzimidazolium)}pyrazinechloride: Synthesis, structure, catalysis and theoretical studies. Inorganica Chimica Acta, 2012, 383, 83-90.	2.4	24
206	3Dâ€QSAR Studies on the Inhibitory Activity of Trimethoprim Analogues against <i>Escherichia coli</i> Dihydrofolate Reductase. Chemical Biology and Drug Design, 2012, 79, 935-942.	3.2	5
207	A computational study on the hydrogen adsorption capacity of various lithium—Doped boron hydrides. Journal of Computational Chemistry, 2012, 33, 425-434.	3.3	34
208	Structure-stability diagrams and stability-reactivity landscapes: a conceptual DFT study. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	7
209	Structure-stability diagrams and stability-reactivity landscapes: a conceptual DFT study. Highlights in Theoretical Chemistry, 2012, , 23-30.	0.0	0
210	Aromaticity in all-metal annular systems: the counter-ion effect. Physical Chemistry Chemical Physics, 2011, 13, 14865.	2.8	20
211	Hydrogen Storage in Clathrate Hydrates. Journal of Physical Chemistry A, 2011, 115, 187-193.	2.5	110
212	Role of aromaticity and charge of a system in its hydrogen trapping potential and vice versa. Physical Chemistry Chemical Physics, 2011, 13, 20602.	2.8	24
213	Synthesis, structure and theoretical studies of Hg(II)–NH carbene complex of annulated ligand pyridinyl[1,2-a]{2-pyridylimidazol}-3-ylidene hexaflurophosphate. Inorganica Chimica Acta, 2011, 375, 271-279.	2.4	36
214	Update 2 of: Electrophilicity Index. Chemical Reviews, 2011, 111, PR43-PR75.	47.7	286
215	Analyzing the efficiency of M n –(C2H4) (MÂ=ÂSc, Ti, Fe, Ni; nÂ=Â1, 2) complexes as effective hydrogen storage materials. Structural Chemistry, 2011, 22, 823-837.	2.0	38
216	Potential use of some metal clusters as hydrogen storage materials—a conceptual DFT approach. Journal of Molecular Modeling, 2011, 17, 777-784.	1.8	30

PRATIM KUMAR CHATTARAJ

#	Article	IF	CITATIONS
217	Net reactivity index (Δω). Journal of Physical Organic Chemistry, 2011, 24, 854-864.	1.9	6
218	Aromaticity and hydrogen storage capability of planar and rings. Chemical Physics Letters, 2011, 506, 315-320.	2.6	22
219	Stability and aromaticity of nH ₂ @B ₁₂ N ₁₂ (<i>n</i> =1–12) clusters. Nano Reviews, 2011, 2, 5767.	3.7	17
220	Bonding, aromaticity, and structure of trigonal dianion metal clusters. Journal of Computational Chemistry, 2010, 31, 1815-1821.	3.3	27
221	Catalyst electronic polarizability and enantiomeric excess in asymmetric hydrogenation. Tetrahedron, 2010, 66, 4560-4563.	1.9	12
222	Synthesis and Structure of a 3D Porous Network Containing Aromatic 1D Chains of Li ₆ Rings: Experimental and Computational Studies. Journal of Physical Chemistry A, 2010, 114, 10871-10877.	2.5	14
223	A conceptual density functional study of structure, bonding, reactivity and the possibility of bond-stretch isomerism in some neutral sulfur clusters, S _{<i>n</i>} (<i>n</i> =3–8). Journal of Sulfur Chemistry, 2010, 31, 231-246.	2.0	12
224	Electrophilicity Equalization Principle. Journal of Physical Chemistry Letters, 2010, 1, 1064-1067.	4.6	57
225	Synthesis, structure and electrochemical behaviour of Ru(ii)- and Pt(ii)-carbene complexes of the NCN-pincer 1,3-bis(2-pyridylmethyl)-1H-benzimidazolium chloride. New Journal of Chemistry, 2010, 34, 1974.	2.8	57
226	Electron Affinity, Electronegativity, and Electrophilicity of Atoms and Ions. Journal of Chemical & Engineering Data, 2010, 55, 1882-1886.	1.9	38
227	Trapping of noble gases (He–Kr) by the aromatic H3+ and Li3+ species: a conceptual DFT approach. New Journal of Chemistry, 2010, 34, 1936.	2.8	30
228	Arsenic toxicity: an atom counting and electrophilicity-based protocol. Molecular Diversity, 2009, 13, 551-556.	3.9	15
229	Electrophilicity index within a conceptual DFT framework. Annual Reports on the Progress of Chemistry Section C, 2009, 105, 13.	4.4	181
230	Net Electrophilicity. Journal of Physical Chemistry A, 2009, 113, 10068-10074.	2.5	173
231	Bonding and aromaticity in an all-metal sandwich-like compound, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>Be</mml:mtext></mml:mrow><mml:r Chemical Physics Letters, 2008, 460, 382-385.</mml:r </mml:msubsup></mml:mrow></mml:math 	nrow> <m< td=""><td>ml:mn>8</td></m<>	ml:mn>8
232	Acidity of meta- and para-substituted aromatic acids: a conceptual DFT study. New Journal of Chemistry, 2008, 32, 1945.	2.8	19
233	Aromaticity in cyclic alkali clusters. Physical Chemistry Chemical Physics, 2008, 10, 2461.	2.8	26
234	Reactivity, Selectivity, and Aromaticity of Be ₃ ²⁻ and Its Complexes. Journal of Physical Chemistry A, 2008, 112, 1612-1621.	2.5	57

#	Article	IF	CITATIONS
235	Aromaticity in alkali metal clusters: Role of the metalloligand and the size of the metal ion. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 395-408.	0.2	0
236	Stability, Reactivity, and Aromaticity of Compounds of a Multivalent Superatom. Journal of Physical Chemistry A, 2007, 111, 11116-11121.	2.5	218
237	Update 1 of: Electrophilicity Index. Chemical Reviews, 2007, 107, PR46-PR74.	47.7	509
238	Synthesis and structure of 1-D Na6cluster chain with short Na–Na distance: Organic like aromaticity in inorganic metal cluster. Chemical Communications, 2007, , 135-137.	4.1	32
239	Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions. Physical Chemistry Chemical Physics, 2007, 9, 3853.	2.8	89
240	Aromaticity in Polyacene Analogues of Inorganic Ring Compounds. Journal of Physical Chemistry A, 2007, 111, 4684-4696.	2.5	52
241	Local hardness: a critical account. Theoretical Chemistry Accounts, 2007, 118, 923-930.	1.4	95
242	A Possible Union of Chemical Bonding, Reactivity, and Kinetics. Journal of Physical Chemistry A, 2006, 110, 11401-11403.	2.5	28
243	Intermolecular ligand exchange in alkyltin trihalides: Semiempirical and density functional theory calculations. Computational and Theoretical Chemistry, 2006, 761, 89-95.	1.5	11
244	Electrophilicity Index. Chemical Reviews, 2006, 106, 2065-2091.	47.7	1,383
245	Comparison between the frozen core and finite differences approximations for the generalized spin-dependent global and local reactivity descriptors in small molecules. Theoretical Chemistry Accounts, 2006, 115, 257-265.	1.4	53
246	Minimum magnetizability principle. Journal of Chemical Physics, 2006, 125, 056101.	3.0	31
247	Cracking of n-heptane in HZSM-5 zeolite. Computational and Theoretical Chemistry, 2005, 755, 99-103.	1.5	4
248	A philicity based analysis of adsorption of small molecules in zeolites. Journal of Chemical Sciences, 2005, 117, 541-548.	1.5	16
249	The maximum hardness principle implies the hard/soft acid/base rule. Journal of Chemical Physics, 2005, 123, 086101.	3.0	100
250	Substituent Effects. Journal of Physical Chemistry A, 2005, 109, 5602-5607.	2.5	14
251	Local Descriptors around a Transition State:  A Link between Chemical Bonding and Reactivity. Journal of Physical Chemistry A, 2005, 109, 3771-3772.	2.5	31
252	Is the Fukui Function a Right Descriptor of Hardâ^'Hard Interactions?. Journal of Physical Chemistry A, 2004. 108. 2487-2491.	2.5	131

#	Article	IF	CITATIONS
253	Towards understanding the molecular internal rotations and vibrations and chemical reactions through the profiles of reactivity and selectivity indices: an ab initio SCF and DFT study. Molecular Physics, 2003, 101, 2841-2853.	1.7	42
254	Philicity:Â A Unified Treatment of Chemical Reactivity and Selectivity. Journal of Physical Chemistry A, 2003, 107, 4973-4975.	2.5	660
255	HSAB Principle Applied to the Time Evolution of Chemical Reactionsâ€. Journal of the American Chemical Society, 2003, 125, 2705-2710.	13.7	163
256	Variation of the Electrophilicity Index along the Reaction Path. Journal of Physical Chemistry A, 2003, 107, 7068-7072.	2.5	263
257	A Density Functional Study of the Claisen Rearrangement of Allyl Aryl Ether, Allyl Arylamine, Allyl Aryl Thio Ether, and a Series of Meta-Substituted Molecules through Reactivity and Selectivity Profiles. Journal of Physical Chemistry A, 2002, 106, 11227-11233.	2.5	40
258	Theoretical study of the trans-N2H2→cis-N2H2 and F2S2→FSSF reactions in gas and solution phases Computational and Theoretical Chemistry, 2002, 580, 171-182.	1.5	28
259	Scrutiny of the HSAB Principle in Some Representative Acidâ^Base Reactions. Journal of Physical Chemistry A, 2001, 105, 8815-8820.	2.5	33
260	Ab Initio SCF and DFT Studies on Solvent Effects on Intramolecular Rearrangement Reactions. Journal of Physical Chemistry A, 2001, 105, 4272-4283.	2.5	67
261	Atoms-in-molecules partitioning of a molecular density. International Journal of Quantum Chemistry, 2000, 77, 403-407.	2.0	58
262	Molecular Electronic Excitations and the Minimum Polarizability Principle. Journal of Physical Chemistry A, 2000, 104, 3185-3187.	2.5	94
263	Woodwardâ^'Hoffmann Rule in the Light of the Principles of Maximum Hardness and Minimum Polarizability:Â DFT and Ab Initio SCF Studies. Journal of the American Chemical Society, 2000, 122, 348-351.	13.7	90
264	Chemical bonding and reactivity: a local thermodynamic viewpoint. Chemical Physics Letters, 1999, 314, 114-121.	2.6	47
265	Validity of the Minimum Polarizability Principle in Molecular Vibrations and Internal Rotations:Â An ab Initio SCF Study. Journal of Physical Chemistry A, 1999, 103, 9307-9312.	2.5	127
266	Exchange?correlation potential and excited-state density functional theory. International Journal of Quantum Chemistry, 1996, 60, 535-543.	2.0	17
267	Chemical softness in model electronic systems: dependence on temperature and chemical potential. Chemical Physics, 1996, 204, 429-437.	1.9	57
268	The maximum hardness principle in the Gyftopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chemical Physics Letters, 1995, 237, 171-176.	2.6	177
269	Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom. Journal of Chemical Physics, 1995, 103, 10621-10626.	3.0	89
270	Appraisal of Chemical Bond Making, Bond Breaking, and Electron Transfer in Solution in the Light of the Principle of Maximum Hardness. Journal of Organic Chemistry, 1995, 60, 4707-4714.	3.2	65

#	Article	IF	CITATIONS
271	Variational method for determining the Fukui function and chemical hardness of an electronic system. Journal of Chemical Physics, 1995, 103, 7645-7646.	3.0	138
272	An ab initio study resulting in a greater understanding of the HSAB principle. Journal of the American Chemical Society, 1994, 116, 1067-1071.	13.7	153
273	Density functional theory of chemical hardness. , 1993, , 11-25.		45
274	HSAB principle. Journal of the American Chemical Society, 1991, 113, 1855-1856.	13.7	569
275	Principle of maximum hardness. Journal of the American Chemical Society, 1991, 113, 1854-1855.	13.7	1,188
276	Aspects of the Softness and Hardness Concepts of Densityâ€Functional Theory. Israel Journal of Chemistry, 1991, 31, 395-402.	2.3	128
277	Aromaticity and conceptual density functional theory. Chemical Modelling, 0, , 45-98.	0.4	2
278	Possible catalytic activity of N,N-coordinated mono-cationic copper bound Pyrazol-1-yl(1H-pyrrol-2-yl)methanone complex: a computational study. Proceedings of the Indian National Science Academy, 0, , 1.	1.4	0