
Leopold Eckhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy, 2022, 18, 1005-1019.	9.1	6
2	Single-cell transcriptomics defines keratinocyte differentiation in avian scutate scales. Scientific Reports, 2022, 12, 126.	3.3	4
3	Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Scientific Reports, 2022, 12, 1112.	3.3	2
4	Identification of New Biological Pathways Involved in Skin Aging From the Analysis of French Women Genome-Wide Data. Frontiers in Genetics, 2022, 13, 836581.	2.3	3
5	The Whey Acidic Protein WFDC12 Is Specifically Expressed in Terminally Differentiated Keratinocytes and Regulates Epidermal Serine Protease Activity. Journal of Investigative Dermatology, 2021, 141, 1198-1206.e13.	0.7	12
6	The Trichohyalin-Like Protein Scaffoldin Is Expressed in the Multilayered Periderm during Development of Avian Beak and Egg Tooth. Genes, 2021, 12, 248.	2.4	5
7	Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages. Journal of Morphology, 2021, 282, 917-933.	1.2	5
8	Gene duplications and gene loss in the epidermal differentiation complex during the evolutionary land-to-water transition of cetaceans. Scientific Reports, 2021, 11, 12334.	3.3	12
9	An InÂVitro Model of Avian Skin Reveals Evolutionarily Conserved Transcriptional Regulation of Epidermal Barrier Formation. Journal of Investigative Dermatology, 2021, 141, 2829-2837.	0.7	6
10	Identification of Chicken Transglutaminase 1 and In Situ Localization of Transglutaminase Activity in Avian Skin and Esophagus. Genes, 2021, 12, 1565.	2.4	4
11	NOD2 and reproduction-associated NOD-like receptors have been lost during the evolution of pangolins. Immunogenetics, 2021, , 1.	2.4	2
12	Filaggrin Expression and Processing Deficiencies Impair Corneocyte Surface Texture and Stiffness in Mice. Journal of Investigative Dermatology, 2020, 140, 615-623.e5.	0.7	28
13	ATG7 is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. Autophagy, 2020, 16, 1851-1857.	9.1	20
14	Convergent Evolution of Cysteine-Rich Keratins in Hard Skin Appendages of Terrestrial Vertebrates. Molecular Biology and Evolution, 2020, 37, 982-993.	8.9	33
15	Cell aging and cellular senescence in skin aging — Recent advances in fibroblast and keratinocyte biology. Experimental Gerontology, 2020, 130, 110780.	2.8	81
16	Cerebellar Degeneration-related Antigen 1 Is Ubiquitously Expressed in Human Epidermis and Dermis. Current Medical Science, 2020, 40, 570-573.	1.8	1
17	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
18	Identification of epidermal differentiation genes of the tuatara provides insights into the early evolution of lepidosaurian skin. Scientific Reports, 2020, 10, 12844.	3.3	12

#	Article	IF	CITATIONS
19	Pangolins Lack IFIH1/MDA5, a Cytoplasmic RNA Sensor That Initiates Innate Immune Defense Upon Coronavirus Infection. Frontiers in Immunology, 2020, 11, 939.	4.8	45
20	Cytosolic DNA sensing through cGAS and STING is inactivated by gene mutations in pangolins. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 474-480.	4.9	16
21	PIWIL-2 and piRNAs are regularly expressed in epithelia of the skin and their expression is related to differentiation. Archives of Dermatological Research, 2020, 312, 705-714.	1.9	8
22	TINCR is not a non oding RNA but encodes a protein component of cornified epidermal keratinocytes. Experimental Dermatology, 2020, 29, 376-379.	2.9	18
23	Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot. Biology, 2020, 9, 59.	2.8	12
24	Comparative genomics suggests loss of keratin K24 in three evolutionary lineages of mammals. Scientific Reports, 2019, 9, 10924.	3.3	10
25	Immunolocalization and phylogenetic profiling of the feather protein with the highest cysteine content. Protoplasma, 2019, 256, 1257-1265.	2.1	15
26	Autophagic Control of Skin Aging. Frontiers in Cell and Developmental Biology, 2019, 7, 143.	3.7	52
27	A Stress Response Program at the Origin of Evolutionary Innovation in the Skin. Evolutionary Bioinformatics, 2019, 15, 117693431986224.	1.2	10
28	The Differentiation-Associated Keratinocyte Protein Cornifelin Contributes to Cell-Cell Adhesion of Epidermal and Mucosal Keratinocytes. Journal of Investigative Dermatology, 2019, 139, 2292-2301.e9.	0.7	19
29	Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Molecular Biology and Evolution, 2019, 36, 328-340.	8.9	51
30	Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 62-73.	4.9	18
31	Suppression of autophagy perturbs turnover of sequestosome-1/p62 in Merkel cells but not in keratinocytes. Journal of Dermatological Science, 2018, 90, 209-211.	1.9	10
32	Suppression of Epithelial Autophagy Compromises the Homeostasis of Sweat Glands during Aging. Journal of Investigative Dermatology, 2018, 138, 2061-2063.	0.7	10
33	Filamentous Aggregation of Sequestosome-1/p62 in Brain Neurons and Neuroepithelial Cells upon Tyr-Cre-Mediated Deletion of the Autophagy Gene Atg7. Molecular Neurobiology, 2018, 55, 8425-8437.	4.0	13
34	Review: Evolution and diversification of corneous betaâ€proteins, the characteristic epidermal proteins of reptiles and birds. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 438-453.	1.3	48
35	Comparative Analysis of Epidermal Differentiation Genes of Crocodilians Suggests New Models for the Evolutionary Origin of Avian Feather Proteins. Genome Biology and Evolution, 2018, 10, 694-704.	2.5	26
36	Evolution of Trichocyte Keratins. Advances in Experimental Medicine and Biology, 2018, 1054, 33-45.	1.6	19

#	Article	IF	CITATIONS
37	Inactivation of autophagy leads to changes in sebaceous gland morphology and function. Experimental Dermatology, 2018, 27, 1142-1151.	2.9	27
38	The skin barrier: Epidermis vs environment. Experimental Dermatology, 2018, 27, 805-806.	2.9	46
39	Control of cell deathâ€associated danger signals during cornification prevents autoinflammation of the skin. Experimental Dermatology, 2018, 27, 884-891.	2.9	15
40	Autophagy - how to control your intracellular diet. British Journal of Dermatology, 2017, 176, 1417-1419.	1.5	7
41	The caspase-1 inhibitor CARD18 is specifically expressed during late differentiation of keratinocytes and its expression is lost in lichen planus. Journal of Dermatological Science, 2017, 87, 176-182.	1.9	8
42	MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes. Journal of Dermatological Science, 2017, 87, 10-18.	1.9	12
43	Identification and comparative analysis of the epidermal differentiation complex in snakes. Scientific Reports, 2017, 7, 45338.	3.3	29
44	Phylogenetic profiling and gene expression studies implicate a primary role of <scp>PSORS</scp> 1C2 in terminal differentiation of keratinocytes. Experimental Dermatology, 2017, 26, 352-358.	2.9	18
45	Filaggrin has evolved from an "S100 fusedâ€ŧype protein―(<scp>SFTP</scp>) gene present in a common ancestor of amphibians and mammals. Experimental Dermatology, 2017, 26, 955-957.	2.9	14
46	Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. Scientific Reports, 2017, 7, 6433.	3.3	27
47	Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Scientific Reports, 2017, 7, 17446.	3.3	78
48	Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Scientific Reports, 2017, 7, 11902.	3.3	14
49	Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. Journal of Investigative Dermatology, 2017, 137, 587-594.	0.7	67
50	Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice. PLoS ONE, 2016, 11, e0161640.	2.5	13
51	The Expression of the Endogenous mTORC1 Inhibitor Sestrin 2 Is Induced by UVB and Balanced with the Expression Level of Sestrin 1. PLoS ONE, 2016, 11, e0166832.	2.5	14
52	Immunolocalization of a Histidine-Rich Epidermal Differentiation Protein in the Chicken Supports the Hypothesis of an Evolutionary Developmental Link between the Embryonic Subperiderm and Feather Barbs and Barbules. PLoS ONE, 2016, 11, e0167789.	2.5	22
53	Urocanic Acid: An Endogenous Regulator ofÂLangerhans Cells. Journal of Investigative Dermatology, 2016, 136, 1735-1737.	0.7	7

⁵⁴ Urocanic Acid and Skin Photodamage: New Light on an Old Chromophore. , 2016, , 79-99.

1

#	Article	IF	CITATIONS
55	Localisation of keratin K78 in the basal layer and first suprabasal layers of stratified epithelia completes expression catalogue of type II keratins and provides new insights into sequential keratin expression. Cell and Tissue Research, 2016, 363, 735-750.	2.9	11
56	The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. Journal of Structural Biology, 2016, 194, 282-291.	2.8	53
57	Keratins K2 and K10 are essential for the epidermal integrity of plantar skin. Journal of Dermatological Science, 2016, 81, 10-16.	1.9	19
58	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
59	Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell. Molecular Biology and Evolution, 2016, 33, 726-737.	8.9	46
60	Immunolocalization of Scaffoldin, a Trichohyalin‣ike Protein, in the Epidermis of the Chicken Embryo. Anatomical Record, 2015, 298, 479-487.	1.4	13
61	Comparative genomics reveals conservation of filaggrin and loss of caspaseâ€14 in dolphins. Experimental Dermatology, 2015, 24, 365-369.	2.9	35
62	Immunolocalization of loricrin in the maturing αâ€layer of normal and regenerating epidermis of the lizard <i>Anolis carolinensis</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 159-167.	1.3	3
63	Convergent evolution of cysteine-rich proteins in feathers and hair. BMC Evolutionary Biology, 2015, 15, 82.	3.2	60
64	Suppression of Autophagy Dysregulates the Antioxidant Response and Causes Premature Senescence of Melanocytes. Journal of Investigative Dermatology, 2015, 135, 1348-1357.	0.7	88
65	Multifaceted role of TREX2 in the skin defense against UV-induced skin carcinogenesis. Oncotarget, 2015, 6, 22375-22396.	1.8	14
66	Roles of Autophagy in the Thymic Epithelium. , 2015, , 231-240.		0
67	Loss of Keratin K2 Expression Causes Aberrant Aggregation of K10, Hyperkeratosis, and Inflammation. Journal of Investigative Dermatology, 2014, 134, 2579-2588.	0.7	31
68	Trichohyalin-Like Proteins Have Evolutionarily Conserved Roles in the Morphogenesis of Skin Appendages. Journal of Investigative Dermatology, 2014, 134, 2685-2692.	0.7	62
69	Evolutionary Origin and Diversification of Epidermal Barrier Proteins in Amniotes. Molecular Biology and Evolution, 2014, 31, 3194-3205.	8.9	109
70	New facets of keratin K77: interspecies variations of expression and different intracellular location in embryonic and adult skin of humans and mice. Cell and Tissue Research, 2013, 354, 793-812.	2.9	13
71	Cell death by cornification. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3471-3480.	4.1	358
72	Epidermal keratinocytes form a functional skin barrier in the absence of Atg7 dependent autophagy. Journal of Dermatological Science, 2013, 71, 67-75.	1.9	59

#	Article	IF	CITATIONS
73	Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia. Biochemical and Biophysical Research Communications, 2013, 430, 689-694.	2.1	41
74	Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 37-47.	5.7	142
75	Autophagy Is Induced by UVA and Promotes Removal of Oxidized Phospholipids and Protein Aggregates in Epidermal Keratinocytes. Journal of Investigative Dermatology, 2013, 133, 1629-1637.	0.7	116
76	Identification of a Homozygous PSTPIP1 Mutation in a Patient With a PAPA-Like Syndrome Responding to Canakinumab Treatment. JAMA Dermatology, 2013, 149, 209.	4.1	82
77	Autophagy in epithelial homeostasis and defense. Frontiers in Bioscience - Elite, 2013, E5, 1000-1010.	1.8	17
78	Mechanisms and emerging functions of DNA degradation in the epidermis. Frontiers in Bioscience - Landmark, 2012, 17, 2461.	3.0	26
79	â€`Don't be so overâ€protective!'. EMBO Molecular Medicine, 2012, 4, 362-363.	6.9	3
80	Impact of filaggrin mutations on Raman spectra and biophysical properties of the stratum corneum in mild to moderate atopic dermatitis. Journal of the European Academy of Dermatology and Venereology, 2012, 26, 983-990.	2.4	53
81	In situ labeling of DNA reveals interindividual variation in nuclear DNA breakdown in hair and may be useful to predict success of forensic genotyping of hair. International Journal of Legal Medicine, 2012, 126, 63-70.	2.2	27
82	Autophagy in the Thymic Epithelium Is Dispensable for the Development of Self-Tolerance in a Novel Mouse Model. PLoS ONE, 2012, 7, e38933.	2.5	47
83	Increased Sensitivity of Histidinemic Mice to UVB Radiation Suggests a Crucial Role of Endogenous Urocanic Acid in Photoprotection. Journal of Investigative Dermatology, 2011, 131, 188-194.	0.7	108
84	Deleterious Mutations of a Claw Keratin in Multiple Taxa of Reptiles. Journal of Molecular Evolution, 2011, 72, 265-273.	1.8	21
85	Ultrastructural localization of hair keratin homologs in the claw of the lizard <i>Anolis carolinensis</i> . Journal of Morphology, 2011, 272, 363-370.	1.2	16
86	Essential Role of the Keratinocyte-Specific Endonuclease DNase1L2 in the Removal of Nuclear DNA from Hair and Nails. Journal of Investigative Dermatology, 2011, 131, 1208-1215.	0.7	59
87	Cuts by Caspase-14 Control the Proteolysis of Filaggrin. Journal of Investigative Dermatology, 2011, 131, 2173-2175.	0.7	14
88	DNase 2 Is the Main DNA-Degrading Enzyme of the Stratum Corneum. PLoS ONE, 2011, 6, e17581.	2.5	42
89	miRâ€17, miRâ€19b, miRâ€20a, and miRâ€106a are downâ€regulated in human aging. Aging Cell, 2010, 9, 291-2	9 6. 7	338
90	Against the Rules: Human Keratin K80. Journal of Biological Chemistry, 2010, 285, 36909-36921.	3.4	36

#	Article	IF	CITATIONS
91	The Antimicrobial Heterodimer S100A8/S100A9 (Calprotectin) Is Upregulated by Bacterial Flagellin in Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 2423-2430.	0.7	67
92	ls the Filaggrin–Histidine–Urocanic Acid Pathway Essential for Stratum Corneum Acidification?. Journal of Investigative Dermatology, 2010, 130, 2141-2144.	0.7	56
93	Knockdown of Filaggrin Impairs Diffusion Barrier Function and Increases UV Sensitivity in a Human Skin Model. Journal of Investigative Dermatology, 2010, 130, 2286-2294.	0.7	236
94	Aldehyde dehydrogenase 1A3 is transcriptionally activated by all-trans-retinoic acid in human epidermal keratinocytes. Biochemical and Biophysical Research Communications, 2010, 400, 207-211.	2.1	16
95	Psoriasin (S100A7) is a major Escherichia coli-cidal factor of the female genital tract. Mucosal Immunology, 2010, 3, 602-609.	6.0	42
96	Degradation by Stratum Corneum Proteases Prevents Endogenous RNase Inhibitor from Blocking Antimicrobial Activities of RNase 5 and RNase 7. Journal of Investigative Dermatology, 2009, 129, 2193-2201.	0.7	45
97	The anatomy and development of the claws of <i>Xenopus laevis</i> (Lissamphibia: Anura) reveal alternate pathways of structural evolution in the integument of tetrapods. Journal of Anatomy, 2009, 214, 607-619.	1.5	26
98	Duplication of the caspase-12 prodomain and inactivation of NLRC4/IPAF in the dog. Biochemical and Biophysical Research Communications, 2009, 384, 226-230.	2.1	10
99	The tail domains of keratins contain conserved amino acid sequence motifs. Journal of Dermatological Science, 2009, 54, 208-209.	1.9	6
100	Histidase expression in human epidermal keratinocytes: Regulation by differentiation status and all-trans retinoic acid. Journal of Dermatological Science, 2008, 50, 209-215.	1.9	27
101	Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18419-18423.	7.1	104
102	Transcription of the caspase-14 gene in human epidermal keratinocytes requires AP-1 and NFκB. Biochemical and Biophysical Research Communications, 2008, 371, 261-266.	2.1	14
103	Flagellin is the principal inducer of the antimicrobial peptide S100A7c (psoriasin) in human epidermal keratinocytes exposed to <i>Escherichia coli</i> . FASEB Journal, 2008, 22, 2168-2176.	0.5	72
104	Identification of Novel Mammalian Caspases Reveals an Important Role of Gene Loss in Shaping the Human Caspase Repertoire. Molecular Biology and Evolution, 2008, 25, 831-841.	8.9	95
105	Phylogenomics of caspase-activated DNA fragmentation factor. Biochemical and Biophysical Research Communications, 2007, 356, 293-299.	2.1	15
106	DNase1L2 Degrades Nuclear DNA during Corneocyte Formation. Journal of Investigative Dermatology, 2007, 127, 24-30.	0.7	65
107	Terminal differentiation of nail matrix keratinocytes involves up-regulation of DNase1L2 but is independent of caspase-14 expression. Differentiation, 2007, 75, 939-946.	1.9	29
108	Identification of a novel exon encoding the amino-terminus of the predominant caspase-5 variants. Biochemical and Biophysical Research Communications, 2006, 348, 682-688.	2.1	6

#	ARTICLE Casuase-15 is autoprocessed at two sites that contain an aspartate residue in the <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
109	altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.1	3
110	xmins:tb="http://www.elsevier.com/xmi/common/table/dtd" xmins:sb="http://www.elsevie. Biochemical Genome Sequence Comparison Reveals Independent Inactivation of the Caspase-15 Gene in Different Evolutionary Lineages of Mammals. Molecular Biology and Evolution, 2006, 23, 2081-2089.	8.9	14
111	2,3,7,8-Tetrachlorodibenzo-p-Dioxin Impairs Differentiation of Normal Human Epidermal Keratinocytes in a Skin Equivalent Model. Journal of Investigative Dermatology, 2005, 124, 275-277.	0.7	19
112	Caspase-14 but not caspase-3 is processed during the development of fetal mouse epidermis. Differentiation, 2005, 73, 406-413.	1.9	41
113	Ultrastructural characterization of an artificial basement membrane produced by cultured keratinocytes. Journal of Biomedical Materials Research - Part A, 2005, 73A, 158-164.	4.0	3
114	Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 286A, 962-973.	2.0	22
115	Identification and Characterization of a Novel Mammalian Caspase with Proapoptotic Activity. Journal of Biological Chemistry, 2005, 280, 35077-35080.	3.4	50
116	Ultrastructural Localization of Caspase-14 in Human Epidermis. Journal of Histochemistry and Cytochemistry, 2004, 52, 1561-1574.	2.5	36
117	Retinoic Acid Increases the Expression of p53 and Proapoptotic Caspases and Sensitizes Keratinocytes to Apoptosis. Cancer Research, 2004, 64, 6542-6548.	0.9	111
118	Stratum corneum-derived caspase-14 is catalytically active. FEBS Letters, 2004, 577, 446-450.	2.8	50
119	A basement membrane-like matrix formed by cell-released proteins at the medium/air interface supports growth of keratinocytes. European Journal of Cell Biology, 2003, 82, 549-555.	3.6	5
120	Hepatocyte Growth Factor/Scatter Factor Inhibits UVB-induced Apoptosis of Human Keratinocytes but Not of Keratinocyte-derived Cell Lines via the Phosphatidylinositol 3-Kinase/AKT Pathway. Journal of Biological Chemistry, 2002, 277, 14146-14152.	3.4	36
121	Human caspase 12 has acquired deleterious mutations. Biochemical and Biophysical Research Communications, 2002, 293, 722-726.	2.1	320
122	Caspase-14 Expression by Epidermal Keratinocytes is Regulated by Retinoids in a Differentiation-associated Manner. Journal of Investigative Dermatology, 2002, 119, 1150-1155.	0.7	102
123	Evidence That Caspase-13 Is Not a Human but a Bovine Gene. Biochemical and Biophysical Research Communications, 2001, 285, 1150-1154.	2.1	52
124	Alternative Splicing of Caspase-8 mRNA during Differentiation of Human Leukocytes. Biochemical and Biophysical Research Communications, 2001, 289, 777-781.	2.1	26
125	Terminal Differentiation of Human Keratinocytes and Stratum Corneum Formation is Associated with Caspase-14 Activation. Journal of Investigative Dermatology, 2000, 115, 1148-1151.	0.7	186
126	Melanin Binds Reversibly to Thermostable DNA Polymerase and Inhibits Its Activity. Biochemical and Biophysical Research Communications, 2000, 271, 726-730.	2.1	163

#	Article	IF	CITATIONS
127	Caspase-14: Analysis of Gene Structure and mRNA Expression during Keratinocyte Differentiation. Biochemical and Biophysical Research Communications, 2000, 277, 655-659.	2.1	393
128	Reverse Transcription-Polymerase Chain Reaction Products of Alternatively Spliced mRNAs Form DNA Heteroduplexes and Heteroduplex Complexes. Journal of Biological Chemistry, 1999, 274, 2613-2615.	3.4	39
129	Identification of a Human cDNA Encoding a Novel Bcl-x Isoform. Biochemical and Biophysical Research Communications, 1998, 248, 147-152.	2.1	28