Jean S Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096799/publications.pdf

Version: 2024-02-01

56724 57758 7,336 120 44 83 citations h-index g-index papers 120 120 120 6509 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Peroxisomes Regulate Cellular Free Fatty Acids to Modulate Mast Cell TLR2, TLR4, and IgE-Mediated Activation. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	6
2	Celebrating a decade of Canadian immunology published in <i>Immunology & Ell Biology (i). Immunology and Cell Biology, 2022, 100, 383-386.</i>	2.3	0
3	Mice Heterozygous for the Sodium Channel Scn8a (Nav1.6) Have Reduced Inflammatory Responses During EAE and Following LPS Challenge. Frontiers in Immunology, 2021, 12, 533423.	4.8	3
4	Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells, 2021, 10, 986.	4.1	17
5	Histamine receptor 2 blockade selectively impacts B and T cells in healthy subjects. Scientific Reports, 2021, 11, 9405.	3.3	6
6	Distinct Metalloproteinase Expression and Functions in Systemic Sclerosis and Fibrosis: What We Know and the Potential for Intervention. Frontiers in Physiology, 2021, 12, 727451.	2.8	15
7	Mast Cell Modulation of B Cell Responses: An Under-Appreciated Partnership in Host Defence. Frontiers in Immunology, 2021, 12, 718499.	4.8	12
8	Breastfeeding and the developmental origins of mucosal immunity: how human milk shapes the innate and adaptive mucosal immune systems. Current Opinion in Gastroenterology, 2021, 37, 547-556.	2.3	31
9	Reduced peanut sensitization with maternal peanut consumption and early peanut introduction while breastfeeding. Journal of Developmental Origins of Health and Disease, 2021, 12, 811-818.	1.4	12
_			
10	Mast Cells. , 2020, , 521-532.		0
10	Mast Cells., 2020, , 521-532. Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343.	3.3	0 21
	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas.	3.3	
11	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343. Tollâ€ike receptor 2 activation induces Câ€"C chemokine receptor 2â€dependent natural killer cell		21
11 12	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343. Tollâ€ike receptor 2 activation induces C–C chemokine receptor 2â€dependent natural killer cell recruitment to the peritoneum. Immunology and Cell Biology, 2020, 98, 854-867. Increased mast cell density is associated with decreased fibrosis in human atrial tissue. Journal of	2.3	5
11 12 13	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343. Tollâ€ike receptor 2 activation induces C–C chemokine receptor 2â€dependent natural killer cell recruitment to the peritoneum. Immunology and Cell Biology, 2020, 98, 854-867. Increased mast cell density is associated with decreased fibrosis in human atrial tissue. Journal of Molecular and Cellular Cardiology, 2020, 149, 15-26. Toll-like receptor 2 impacts the development of oral tolerance in mouse pups via a milk-dependent	2.3	2154
11 12 13	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343. Tollâ€like receptor 2 activation induces Câ€"C chemokine receptor 2â€dependent natural killer cell recruitment to the peritoneum. Immunology and Cell Biology, 2020, 98, 854-867. Increased mast cell density is associated with decreased fibrosis in human atrial tissue. Journal of Molecular and Cellular Cardiology, 2020, 149, 15-26. Toll-like receptor 2 impacts the development of oral tolerance in mouse pups via a milk-dependent mechanism. Journal of Allergy and Clinical Immunology, 2020, 146, 631-641.e8. Association of a Type 2â€"Polarized T Cell Phenotype With Methotrexate Nonresponse in Patients With	2.3 1.9 2.9	21547
11 12 13 14	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343. Tollâ€like receptor 2 activation induces Câ€"C chemokine receptor 2â€dependent natural killer cell recruitment to the peritoneum. Immunology and Cell Biology, 2020, 98, 854-867. Increased mast cell density is associated with decreased fibrosis in human atrial tissue. Journal of Molecular and Cellular Cardiology, 2020, 149, 15-26. Toll-like receptor 2 impacts the development of oral tolerance in mouse pups via a milk-dependent mechanism. Journal of Allergy and Clinical Immunology, 2020, 146, 631-641.e8. Association of a Type 2â€"Polarized T Cell Phenotype With Methotrexate Nonresponse in Patients With Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 1091-1102.	2.3 1.9 2.9 5.6	21 5 4 7 8

#	Article	IF	Citations
19	Mast Cells and Natural Killer Cells—A Potentially Critical Interaction. Viruses, 2019, 11, 514.	3.3	13
20	Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Frontiers in Immunology, 2019, 10, 580.	4.8	58
21	Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. Journal of Neuroinflammation, 2019, 16, 215.	7.2	25
22	Angiotensin II Type I Receptor Blockade Is Associated with Decreased Cutaneous Scar Formation in a Rat Model. Plastic and Reconstructive Surgery, 2019, 144, 803e-813e.	1.4	18
23	Cytokines and Soluble Receptors in Breast Milk as Enhancers of Oral Tolerance Development. Frontiers in Immunology, 2019, 10, 16.	4.8	64
24	Recovery free of heart failure after acute coronary syndrome and coronary revascularization. ESC Heart Failure, 2018, 5, 107-114.	3.1	7
25	Interferon α2 and interferon γ induce the degranulation independent production of VEGFâ€A and ILâ€1 receptor antagonist and other mediators from human mast cells. Immunity, Inflammation and Disease, 2018, 6, 176-189.	2.7	12
26	An introduction to immunology and immunopathology. Allergy, Asthma and Clinical Immunology, 2018, 14, 49.	2.0	440
27	Ranitidine Inhibition of Breast Tumor Growth Is B Cell Dependent and Associated With an Enhanced Antitumor Antibody Response. Frontiers in Immunology, 2018, 9, 1894.	4.8	15
28	Virus-Infected Human Mast Cells Enhance Natural Killer Cell Functions. Journal of Innate Immunity, 2017, 9, 94-108.	3.8	24
29	VEGF-A is increased in exogenous endophthalmitis. Canadian Journal of Ophthalmology, 2017, 52, 277-282.	0.7	4
30	Changes in Circulating Monocyte Subsets (CD16 Expression) and Neutrophil-to-Lymphocyte Ratio Observed in Patients Undergoing Cardiac Surgery. Frontiers in Cardiovascular Medicine, 2017, 4, 12.	2.4	11
31	Mast CellsÂin Allergy, Host Defense, and Immune Regulation. , 2016, , 309-325.		0
32	Prenatal triclosan exposure and cord blood immune system biomarkers. International Journal of Hygiene and Environmental Health, 2016, 219, 454-457.	4.3	13
33	Air Pollution During Pregnancy and Cord Blood Immune System Biomarkers. Journal of Occupational and Environmental Medicine, 2016, 58, 979-986.	1.7	27
34	Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncolmmunology, 2016, 5, e1151591.	4. 6	29
35	The impact of ranitidine on monocyte responses in the context of solid tumors. Oncotarget, 2016, 7, 10891-10904.	1.8	10
36	Maternal exposure to metals and persistent pollutants and cord blood immune system biomarkers. Environmental Health, 2015, 14, 52.	4.0	21

#	Article	IF	CITATIONS
37	Prenatal exposure to phthalates, bisphenol A and perfluoroalkyl substances and cord blood levels of IgE, TSLP and IL-33. Environmental Research, 2015, 140, 360-368.	7.5	48
38	Tollâ€like receptor 2 activators modulate oral tolerance in mice. Clinical and Experimental Allergy, 2015, 45, 1690-1702.	2.9	15
39	Predictors of interleukinâ€33 and thymic stromal lymphopoietin levels in cord blood. Pediatric Allergy and Immunology, 2015, 26, 161-167.	2.6	10
40	Respiratory syncytial virus infection of primary human mast cells induces the selective production of type I interferons, CXCL10, and CCL4. Journal of Allergy and Clinical Immunology, 2015, 136, 1346-1354.e1.	2.9	46
41	Mast cells as targets for immunotherapy of solid tumors. Molecular Immunology, 2015, 63, 113-124.	2.2	142
42	Human Mast Cell Activation with Viruses and Pathogen Products. Methods in Molecular Biology, 2015, 1220, 179-201.	0.9	6
43	CD43â^', but not CD43+, IL-10-producing CD1dhiCD5+ B cells suppress type 1 immune responses during Chlamydia muridarum genital tract infection. Mucosal Immunology, 2015, 8, 94-106.	6.0	17
44	Autophagy Facilitates Antibody-Enhanced Dengue Virus Infection in Human Pre-Basophil/Mast Cells. PLoS ONE, 2014, 9, e110655.	2.5	28
45	Toll-Like Receptor 2 as a Regulator of Oral Tolerance in the Gastrointestinal Tract. Mediators of Inflammation, 2014, 2014, 1-7.	3.0	17
46	MAPK Kinase 3 Is a Tumor Suppressor with Reduced Copy Number in Breast Cancer. Cancer Research, 2014, 74, 162-172.	0.9	27
47	Mast Cell Modulation of the Tumor Microenvironment. , 2013, , 479-509.		1
48	Virus stimulation of human mast cells results in the recruitment of CD56 ⁺ T cells by a mechanism dependent on CCR5 ligands. FASEB Journal, 2012, 26, 1280-1289.	0.5	41
49	IL- $7R\hat{l}\pm$ and L-selectin, but not CD103 or CD34, are required for murine peanut-induced anaphylaxis. Allergy, Asthma and Clinical Immunology, 2012, 8, 15.	2.0	1
50	Mast cells and IgE activation do not alter the development of oral tolerance in a murine model. Journal of Allergy and Clinical Immunology, 2012, 130, 705-715.e1.	2.9	18
51	Local and systemic immunological parameters associated with remission of asthma symptoms in children. Allergy, Asthma and Clinical Immunology, 2012, 8, 16.	2.0	14
52	RNA Sensors Enable Human Mast Cell Anti-Viral Chemokine Production and IFN-Mediated Protection in Response to Antibody-Enhanced Dengue Virus Infection. PLoS ONE, 2012, 7, e34055.	2.5	64
53	Tissue Eosinophilia in a Mouse Model of Colitis Is Highly Dependent on TLR2 and Independent of Mast Cells. American Journal of Pathology, 2011, 178, 150-160.	3.8	17
54	Zebrafish mast cells possess an FcÉ-RI-like receptor and participate in innate and adaptive immune responses. Developmental and Comparative Immunology, 2011, 35, 125-134.	2.3	51

#	Article	IF	CITATIONS
55	Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation. Journal of Virology, 2011, 85, 1145-1150.	3.4	59
56	Enhancement of Mast Cell IL-6 Production by Combined Toll-Like and Nucleotide-Binding Oligomerization Domain-Like Receptor Activation. International Archives of Allergy and Immunology, 2011, 154, 227-235.	2.1	22
57	Mast Cells, Histamine, and IL-6 Regulate the Selective Influx of Dendritic Cell Subsets into an Inflamed Lymph Node. Journal of Immunology, 2010, 184, 2116-2123.	0.8	95
58	A Critical Role for Mast Cells and Mast Cell-Derived IL-6 in TLR2-Mediated Inhibition of Tumor Growth. Journal of Immunology, 2010, 185, 7067-7076.	0.8	121
59	Dramatic caspase-dependent apoptosis in antibody-enhanced dengue virus infection of human mast cells. Journal of Leukocyte Biology, 2009, 85, 71-80.	3.3	43
60	Zymosan treatment of mouse mast cells enhances dectin-1 expression and induces dectin-1-dependent reactive oxygen species (ROS) generation. Immunobiology, 2009, 214, 321-330.	1.9	56
61	The gut microbiota of tollâ€like receptor 2â€deficient mice exhibits lineageâ€specific modifications. Environmental Microbiology Reports, 2009, 1, 65-70.	2.4	13
62	Mast Cell and Basophils: Interaction with IgE and Responses to Toll like Receptor Activators. , 2009, , $113\text{-}133$.		2
63	Signal transducer and activator of transcription 4 (STAT4), but not IL-12 contributes to Pseudomonas aeruginosa-induced lung inflammation in mice. Immunobiology, 2008, 213, 469-479.	1.9	10
64	Aging in the absence of TLR2 is associated with reduced IFN- \hat{l}^3 responses in the large intestine and increased severity of induced colitis. Journal of Leukocyte Biology, 2008, 83, 833-842.	3.3	24
65	TRAF6 Specifically Contributes to FcϵRI-mediated Cytokine Production but Not Mast Cell Degranulation. Journal of Biological Chemistry, 2008, 283, 32110-32118.	3.4	22
66	Human mast cell activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8-dependent mechanism. Blood, 2008, 111, 5467-5476.	1.4	108
67	Selective stimulation of mast cells with a TLR2 agonist inhibits tumor growth in vivo. FASEB Journal, 2008, 22, 1076.14.	0.5	0
68	Keystone symposium on â€~Mast Cells, Basophils and IgE: Host Defense and Disease'. Expert Review of Clinical Immunology, 2007, 3, 259-260.	3.0	0
69	New and emerging roles for mast cells in host defence. Current Opinion in Immunology, 2007, 19, 31-38.	5. 5	253
70	Bovine Lactoferricin Inhibits Basic Fibroblast Growth Factor- and Vascular Endothelial Growth Factor165-Induced Angiogenesis by Competing for Heparin-Like Binding Sites on Endothelial Cells. American Journal of Pathology, 2006, 169, 1753-1766.	3.8	78
71	Fungal zymosan induces leukotriene production by human mast cells through aÂdectin-1–dependent mechanism. Journal of Allergy and Clinical Immunology, 2006, 118, 837-843.	2.9	107
72	The myeloid differentiation factor 88 is dispensable for the development of a delayed host response to Pseudomonas aeruginosa lung infection in mice. Clinical and Experimental Immunology, 2006, 146, 323-329.	2.6	20

#	Article	IF	CITATIONS
73	Mast Cells Have a Pivotal Role in TNF-Independent Lymph Node Hypertrophy and the Mobilization of Langerhans Cells in Response to Bacterial Peptidoglycan. Journal of Immunology, 2006, 177, 1755-1762.	0.8	111
74	A dominant role for FcγRII in antibody-enhanced dengue virus infection of human mast cells and associated CCL5 release. Journal of Leukocyte Biology, 2006, 80, 1242-1250.	3.3	56
75	The Development of Early Host Response to Pseudomonas aeruginosa Lung Infection Is Critically Dependent on Myeloid Differentiation Factor 88 in Mice. Journal of Biological Chemistry, 2004, 279, 49315-49322.	3.4	88
76	Prostaglandin E2 Induces Degranulation-Independent Production of Vascular Endothelial Growth Factor by Human Mast Cells. Journal of Immunology, 2004, 172, 1227-1236.	0.8	159
77	Mast-cell responses to pathogens. Nature Reviews Immunology, 2004, 4, 787-799.	22.7	714
78	Mast cells in innate immunity. Journal of Allergy and Clinical Immunology, 2004, 114, 21-27.	2.9	175
79	lgE-Mediated Mast Cell Activation Induces Langerhans Cell Migration In Vivo. Journal of Immunology, 2004, 173, 5275-5282.	0.8	125
80	Selective Early Production of CCL20, or Macrophage Inflammatory Protein $3\hat{l}_{\pm}$, by Human Mast Cells in Response to Pseudomonas aeruginosa. Infection and Immunity, 2003, 71, 365-373.	2,2	44
81	Toll-Like Receptor-Mediated Activation of Mast Cells: Implications for Allergic Disease?. International Archives of Allergy and Immunology, 2003, 132, 87-97.	2.1	73
82	Development of an Interleukin-12-Deficient Mouse Model That Is Permissive for Colonization by a Motile KE26695 Strain of Helicobacter pylori. Infection and Immunity, 2003, 71, 2534-2541.	2.2	39
83	Cutting Edge: Distinct Toll-Like Receptor 2 Activators Selectively Induce Different Classes of Mediator Production from Human Mast Cells. Journal of Immunology, 2003, 170, 1625-1629.	0.8	335
84	Mast Cell Cytokine and Chemokine Responses to Bacterial and Viral Infection. Current Pharmaceutical Design, 2003, 9, 11-24.	1.9	77
85	Human mast cells induce caspase-independent DNA fragmentation in leukemic T cells. Oncology Reports, 2003, 10, 1019-23.	2.6	7
86	Dengue Virus Selectively Induces Human Mast Cell Chemokine Production. Journal of Virology, 2002, 76, 8408-8419.	3.4	150
87	Blockade of either alpha-4 or beta-7 integrins selectively inhibits intestinal mast cell hyperplasia and worm expulsion in response toNippostrongylus brasiliensis infection. European Journal of Immunology, 2001, 31, 860-868.	2.9	26
88	A Th1-Inducing Adjuvant, MPL [®] , Enhances Antibody Profiles in Experimental Animals Suggesting It Has the Potential to Improve the Efficacy of Allergy Vaccines. International Archives of Allergy and Immunology, 2001, 126, 135-139.	2.1	109
89	SDF-1 Induces IL-8 Production and Transendothelial Migration of Human Cord Blood-Derived Mast Cells. International Archives of Allergy and Immunology, 2001, 124, 142-145.	2.1	34
90	Modulation of rat uterine contractility by mast cells and their mediators. American Journal of Obstetrics and Gynecology, 2000, 183, 118-125.	1.3	41

#	Article	IF	CITATIONS
91	TNF-αDysregulation in Asthma: Relationship to Ongoing Corticosteroid Therapy. Canadian Respiratory Journal, 2000, 7, 229-237.	1.6	13
92	Human Mast Cells Transmigrate Through Human Umbilical Vein Endothelial Monolayers and Selectively Produce IL-8 in Response to Stromal Cell-Derived Factor- $\hat{1l}\pm$. Journal of Immunology, 2000, 165, 211-220.	0.8	79
93	Prostaglandin E2 Selectively Enhances the IgE-Mediated Production of IL-6 and Granulocyte-Macrophage Colony-Stimulating Factor by Mast Cells Through an EP1/EP3-Dependent Mechanism. Journal of Immunology, 2000, 165, 6545-6552.	0.8	96
94	Release of Vasoactive Cytokines by Antibody-Enhanced Dengue Virus Infection of a Human Mast Cell/Basophil Line. Journal of Virology, 2000, 74, 7146-7150.	3.4	119
95	Selective antibody blockade of lymphocyte migration to mucosal sites and mast cell adhesion. Journal of Leukocyte Biology, 1999, 65, 649-657.	3.3	13
96	Nerve growth factor modifies the expression of inflammatory cytokines by mast cells via a prostanoid-dependent mechanism. Journal of Immunology, 1999, 162, 4271-6.	0.8	87
97	Cytokine and eosinophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 510-520.	2.9	199
98	Stress Triggered Abortions Are Associated With Alterations of Granulated Cells in the Decidua. American Journal of Reproductive Immunology, 1997, 37, 94-100.	1.2	44
99	Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet, The, 1996, 347, 150-153.	13.7	466
100	Specific inhibition of beta-tryptase expression in a human mast cell line by granulocyte-macrophage colony-stimulating factor produced by airways structural cells American Journal of Respiratory Cell and Molecular Biology, 1996, 15, 355-360.	2.9	6
101	Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells Journal of Clinical Investigation, 1996, 97, 1122-1128.	8.2	144
102	Increased survival of nasal polyp eosinophils. Immunology Letters, 1995, 45, 219-221.	2.5	12
103	Mast cells and the nerves-potential interactions in the context of chronic disease. Clinical and Experimental Allergy, 1995, 25, 102-110.	2.9	66
104	The role of mast cells in inflammatory reactions of the airways, skin and intestine. Current Opinion in Immunology, 1994, 6, 853-859.	5.5	76
105	Leukemia inhibitory factor production by rat mast cells. European Journal of Immunology, 1993, 23, 2116-2120.	2.9	37
106	Role of mast cells in peritoneal adhesion formation. American Journal of Surgery, 1993, 165, 127-130.	1.8	60
107	Histamine does not mediate mucosal permeability changes after subclinical intestinal ischemia-reperfusion injury. Journal of Pediatric Surgery, 1993, 28, 1113-1116.	1.6	4
108	Repeated antigen challenge in rats induces a mucosal mast cell hyperplasia. Gastroenterology, 1993, 105, 391-398.	1.3	11

#	Article	IF	CITATIONS
109	Microenvironmental Control of Inflammatory Cell Differentiation. International Archives of Allergy and Immunology, 1992, 99, 330-332.	2.1	2
110	Dexamethasone induces a down regulation of rat mast cell protease II content in rat basophilic leukaemia cells. Agents and Actions, 1992, 36, 4-10.	0.7	5
111	Mast Cell/Nerve Interactions <i>In Vitro</i> and <i>In Vivo</i> . The American Review of Respiratory Disease, 1991, 143, S55-S58.	2.9	121
112	Granulocyte/Macrophage Colony-stimulating Factor (GM-CSF) Gene Expression by Eosinophils in Nasal Polyposis. American Journal of Respiratory Cell and Molecular Biology, 1991, 5, 505-510.	2.9	102
113	Mast cells. Seminars in Immunopathology, 1990, 12, 191-202.	4.0	22
114	Ion Transport in Rat Tracheal EpitheliumIn Vitro: Role of Capsaicin-sensitive Nerves in Allergic Reactions. The American Review of Respiratory Disease, 1990, 141, 393-397.	2.9	56
115	Antigen-induced Lung Solute Clearance in Rats Is Dependent on Capsaicin-sensitive Nerves. The American Review of Respiratory Disease, 1989, 139, 401-406.	2.9	26
116	Intestinal mucosal injury is associated with mast cell activation and leukotriene generation during Nippostrongylus-induced inflammation in the rat. Digestive Diseases and Sciences, 1989, 34, 724-731.	2.3	67
117	A survey of nonatopic and atopic children and adults for the presence of anti-IgE autoantibodies. Clinical Immunology and Immunopathology, 1989, 53, 40-51.	2.0	14
118	Pavlovian Conditioning of Rat Mucosal Mast Cells to Secrete Rat Mast Cell Protease II. Science, 1989, 243, 83-85.	12.6	322
119	Induction of an auto-anti-IgE response in rats II. Effects on mast cell populations. European Journal of Immunology, 1987, 17, 445-451.	2.9	16
120	Induction of an auto-anti-lgE response in rats. I. Effects on serum lgE concentrations. European Journal of Immunology, 1985, 15, 272-277.	2.9	35