Thomas J Begley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096623/publications.pdf

Version: 2024-02-01

394421 477307 7,553 29 19 29 citations g-index h-index papers 31 31 31 16050 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress. PLoS Genetics, 2010, 6, e1001247.	3.5	386
3	Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nature Communications, 2012, 3, 937.	12.8	348
4	Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response. Molecular Cell, 2007, 28, 860-870.	9.7	275
5	Mitochondrial ROS control of cancer. Seminars in Cancer Biology, 2017, 47, 57-66.	9.6	222
6	Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nature Protocols, 2014, 9, 828-841.	12.0	221
7	Human AlkB Homolog ABH8 Is a tRNA Methyltransferase Required for Wobble Uridine Modification and DNA Damage Survival. Molecular and Cellular Biology, 2010, 30, 2449-2459.	2.3	182
8	tRNA modifications regulate translation during cellular stress. FEBS Letters, 2014, 588, 4287-4296.	2.8	138
9	Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biology, 2015, 12, 603-614.	3.1	129
10	tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nature Communications, 2016, 7, 13302.	12.8	129
11	Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18006-18011.	7.1	123
12	A human tRNA methyltransferase 9â€like protein prevents tumour growth by regulating LIN9 and HIF1â€Î±. EMBO Molecular Medicine, 2013, 5, 366-383.	6.9	98
13	Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation. PLoS Genetics, 2015, 11, e1005706.	3.5	92
14	Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biology, 2012, 9, 990-1001.	3.1	91
15	Alkbh8 Regulates Selenocysteine-Protein Expression to Protect against Reactive Oxygen Species Damage. PLoS ONE, 2015, 10, e0131335.	2.5	77
16	A Platform for Discovery and Quantification of Modified Ribonucleosides in RNA. Methods in Enzymology, 2015, 560, 29-71.	1.0	69
17	Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chemical Research in Toxicology, 2015, 28, 978-988.	3.3	68
18	A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. IScience, 2018, 9, 367-381.	4.1	39

#	Article	IF	CITATIONS
19	Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming. Redox Biology, 2020, 28, 101375.	9.0	25
20	Detecting the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1663.	6.4	23
21	Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. Science Advances, 2018, 4, eaas9184.	10.3	22
22	Gene- and genome-based analysis of significant codon patterns in yeast, rat and mice genomes with the CUT Codon UTilization tool. Methods, 2016, 107, 98-109.	3.8	21
23	Towards precision prevention: Technologies for identifying healthy individuals with high risk of disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 800-802, 14-28.	1.0	20
24	Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radical Biology and Medicine, 2019, 143, 573-593.	2.9	19
25	Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives. Toxicology Letters, 2015, 239, 205-215.	0.8	14
26	The epitranscriptomic writer ALKBH8 drives tolerance and protects mouse lungs from the environmental pollutant naphthalene. Epigenetics, 2020, 15, 1121-1138.	2.7	12
27	Genome Profiling for Aflatoxin B1 Resistance in <i>Saccharomyces cerevisiae</i> Reveals a Role for the CSM2/SHU Complex in Tolerance of Aflatoxin B1-Associated DNA Damage. G3: Genes, Genomes, Genetics, 2020, 10, 3929-3947.	1.8	6
28	tRNA Modification Detection Using Graphene Nanopores: A Simulation Study. Biomolecules, 2017, 7, 65.	4.0	2
29	Diameter dependent degradation of single walled carbon nanotubes. , 2014, , .		O