David B Collum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/509614/publications.pdf

Version: 2024-02-01

128 papers 6,824 citations

44069 48 h-index 75 g-index

130 all docs

130 docs citations

130 times ranked

3125 citing authors

#	Article	IF	CITATIONS
1	Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry. Angewandte Chemie - International Edition, 2013, 52, 11998-12013.	13.8	516
2	Is N,N,N',N'-tetramethylethylenediamine a good ligand for lithium?. Accounts of Chemical Research, 1992, 25, 448-454.	15.6	295
3	Solution structures of lithium dialkylamides and related N-lithiated species: results from lithium-6-nitrogen-15 double labeling experiments. Accounts of Chemical Research, 1993, 26, 227-234.	15.6	234
4	Lithium Diisopropylamide: Solution Kinetics and Implications for Organic Synthesis. Angewandte Chemie - International Edition, 2007, 46, 3002-3017.	13.8	181
5	Lithium Hexamethyldisilazide:  A View of Lithium Ion Solvation through a Glass-Bottom Boat. Accounts of Chemical Research, 1999, 32, 1035-1042.	15.6	169
6	Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone:Â Solution Structures and Relative Reactivities of Mixed Aggregates Underlying the High Enantioselectivities. Journal of the American Chemical Society, 1998, 120, 2028-2038.	13.7	159
7	Mixed aggregation of lithium enolates and lithium halides with lithium 2,2,6,6-tetramethylpiperidide (LiTMP). Journal of the American Chemical Society, 1991, 113, 9575-9585.	13.7	130
8	Ethereal Solvation of Lithium Hexamethyldisilazide: Unexpected Relationships of Solvation Number, Solvation Energy, and Aggregation State. Journal of the American Chemical Society, 1995, 117, 9863-9874.	13.7	113
9	Structure and reactivity of lithium diisopropylamide in the presence of N,N,N',N'-tetramethylethylenediamine. Journal of the American Chemical Society, 1992, 114, 5100-5110.	13.7	112
10	The structure of lithium tetramethylpiperidide and lithium diisopropylamide in the presence of hexamethylphosphoramide: structure-dependent distribution of cyclic and open dimers, ion triplets, and monomers. Journal of the American Chemical Society, 1991, 113, 5751-5757.	13.7	107
11	Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis. Journal of Organic Chemistry, 2009, 74, 2231-2233.	3.2	107
12	Aren-BuLi/TMEDA-Mediated Arene Ortholithiations Directed? Substituent-Dependent Rates, Substituent-Independent Mechanisms. Journal of the American Chemical Society, 2000, 122, 8640-8647.	13.7	104
13	Structure of lithium hexamethyldisilazide in the presence of hexamethylphosphoramide. Spectroscopic and computational studies of monomers, dimers, and triple ions. Journal of the American Chemical Society, 1993, 115, 3475-3483.	13.7	98
14	Structure and reactivity of lithium diisopropylamide (LDA) in hydrocarbon solutions. Formation of unsolvated ketone, ester, and carboxamide enolates. Journal of Organic Chemistry, 1991, 56, 4435-4439.	3.2	94
15	Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS). Journal of the American Chemical Society, 1996, 118, 2217-2225.	13.7	91
16	Determination of structures of solvated lithium dialkylamides by semiempirical (MNDO) methods. Comparison of theory and experiment. Journal of the American Chemical Society, 1992, 114, 2112-2121.	13.7	88
17	Lithium Diisopropylamide Solvated by Monodentate and Bidentate Ligands:Â Solution Structures and Ligand Binding Constants. Journal of the American Chemical Society, 1997, 119, 5567-5572.	13.7	88
18	Highly Enantioselective 1,2-Addition of Lithium Acetylide-Ephedrate Complexes:  Spectroscopic Evidence for Reaction Proceeding via a 2:2 Tetramer, and X-ray Characterization of Related Complexes. Journal of the American Chemical Society, 2000, 122, 11212-11218.	13.7	85

#	Article	IF	Citations
19	Lithium Diisopropylamide-Mediated Enolizations:  Solvent-Independent Rates, Solvent-Dependent Mechanisms. Journal of the American Chemical Society, 2000, 122, 2452-2458.	13.7	84
20	Polydentate Amine and Ether Solvates of Lithium Hexamethyldisilazide (LiHMDS):Â Relationship of Ligand Structure, Relative Solvation Energy, and Aggregation State. Journal of the American Chemical Society, 1996, 118, 10707-10718.	13.7	83
21	Structure and reactivity of lithium diphenylamide. Role of aggregates, mixed aggregates, monomers, and free ions on the rates and selectivities of N-alkylation and E2 elimination. Journal of the American Chemical Society, 1988, 110, 5524-5533.	13.7	79
22	Solid-state and solution studies of lithiated 2-carbomethoxycyclohexanone dimethylhydrazone and lithiated cyclohexanone phenylimine. Journal of the American Chemical Society, 1986, 108, 3415-3422.	13.7	75
23	Structure and reactivity of lithium diisopropylamide (LDA). The consequences of aggregation and solvation during the metalation of an N,N-dimethylhydrazone. Journal of the American Chemical Society, 1989, 111, 6772-6778.	13.7	73
24	Consequences of Correlated Solvation on the Structures and Reactivities of RLi-Diamine Complexes:  1,2-Addition and α-Lithiation Reactions of Imines by TMEDA-Solvated n-Butyllithium and Phenyllithium. Journal of the American Chemical Society, 2002, 124, 264-271.	13.7	73
25	Mechanism of Lithium Dialkylamide-Mediated Ketone and Imine Deprotonations: An MNDO Study of Monomer and Open Dimer Pathways. Journal of the American Chemical Society, 1995, 117, 2166-2178.	13.7	72
26	Lithium Enolates of Simple Ketones:  Structure Determination Using the Method of Continuous Variation. Journal of the American Chemical Society, 2008, 130, 4859-4868.	13.7	72
27	1,4-Addition of Lithium Diisopropylamide to Unsaturated Esters: Role of Rate-Limiting Deaggregation, Autocatalysis, Lithium Chloride Catalysis, and Other Mixed Aggregation Effects. Journal of the American Chemical Society, 2010, 132, 15610-15623.	13.7	72
28	Binding of Diamines to n-Butyllithium Dimers:  Relative Solvation Energies and Evidence of Correlated Solvation. Journal of the American Chemical Society, 1998, 120, 5810-5811.	13.7	70
29	Lithium Dialkylamide Mixed Aggregation: An NMR Spectroscopic Study of the Influence of Hexamethylphosphoramide (HMPA). Journal of the American Chemical Society, 1994, 116, 9198-9202.	13.7	68
30	Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl Carbamates:Â Role of Aggregates and Mixed Aggregates. Journal of the American Chemical Society, 2006, 128, 13753-13760.	13.7	67
31	Lithium Diisopropylamide-Mediated Enolization:Â Catalysis by Hemilabile Ligands. Journal of the American Chemical Society, 2006, 128, 10326-10336.	13.7	66
32	Lithium diisopropylamide mixed aggregates: structures and consequences on the stereochemistry of ketone enolate formation. Journal of the American Chemical Society, 1991, 113, 5053-5055.	13.7	65
33	Regioselective Lithium Diisopropylamide-Mediated Ortholithiation of 1-Chloro-3-(trifluoromethyl)benzene: Role of Autocatalysis, Lithium Chloride Catalysis, and Reversibility. Journal of the American Chemical Society, 2011, 133, 7135-7151.	13.7	65
34	Highly Stereoselective Synthesis of Tetrasubstituted Acyclic All-Carbon Olefins via Enol Tosylation and Suzuki–Miyaura Coupling. Journal of the American Chemical Society, 2017, 139, 10777-10783.	13.7	65
35	Ortholithiation of Anisole byn-BuLiâ^'TMEDA:Â Reaction via Disolvated Dimers. Journal of the American Chemical Society, 1998, 120, 421-422.	13.7	64
36	Lithium Diisopropylamide-Mediated Enolizations:  Solvent-Dependent Mixed Aggregation Effects. Journal of the American Chemical Society, 2000, 122, 2459-2463.	13.7	64

#	Article	IF	Citations
37	Lithium Hexamethyldisilazide-Mediated Enolizations: Influence of Triethylamine on E/Z Selectivities and Enolate Reactivities. Journal of the American Chemical Society, 2008, 130, 8726-8732.	13.7	64
38	BF3-Mediated Addition of Lithium Phenylacetylide to an Imine: Correlations of Structures and Reactivities. BF3·R3N Derivatives as Substitutes for BF3·Et2O. Journal of the American Chemical Society, 2000, 122, 11084-11089.	13.7	61
39	n-Butyllithium/N,N,Nâ€~,Nâ€~-Tetramethylethylenediamine-Mediated Ortholithiations of Aryl Oxazolines:Â Substrate-Dependent Mechanisms. Journal of the American Chemical Society, 2007, 129, 2259-2268.	13.7	55
40	Lithium Diisopropylamide:  Oligomer Structures at Low Ligand Concentrations. Journal of the American Chemical Society, 2001, 123, 199-202.	13.7	54
41	Anionic Snieckusâ^Fries Rearrangement: Solvent Effects and Role of Mixed Aggregates. Journal of the American Chemical Society, 2008, 130, 13709-13717.	13.7	53
42	Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries. Journal of the American Chemical Society, 2017, 139, 527-533.	13.7	53
43	Substituent effects on the stereochemistry of substituted cyclohexanone dimethylhydrazone alkylations. An x-ray crystal structure of lithiated cyclohexanone dimethylhydrazone. Journal of the American Chemical Society, 1984, 106, 4865-4869.	13.7	52
44	Solvent- and substrate-dependent rates of imine metalations by lithium diisopropylamide: understanding the mechanisms underlying krel. Journal of the American Chemical Society, 1993, 115, 8008-8018.	13.7	52
45	Diastereoselective Alkylation of β-Amino Esters:  Structural and Rate Studies Reveal Alkylations of Hexameric Lithium Enolates. Journal of the American Chemical Society, 2004, 126, 16559-16568.	13.7	52
46	Hemi-Labile Ligands in Organolithium Chemistry: Â Rate Studies of the LDA-Mediated \hat{l}_{\pm} - and \hat{l}^{2} -Metalations of Epoxides. Journal of the American Chemical Society, 1999, 121, 11114-11121.	13.7	51
47	Lithium Hexamethyldisilazide/Triethylamine-Mediated Ketone Enolization:Â Remarkable Rate Accelerations Stemming from a Dimer-Based Mechanism. Journal of the American Chemical Society, 2003, 125, 4008-4009.	13.7	51
48	Enediolate–Dilithium Amide Mixed Aggregates in the Enantioselective Alkylation of Arylacetic Acids: Structural Studies and a Stereochemical Model. Journal of the American Chemical Society, 2013, 135, 16853-16864.	13.7	51
49	15N, 13C, 6Li NMR spectroscopic studies and colligative measurements of lithiated cyclohexanone phenylimine solvated by tetrahydrofuran. Journal of the American Chemical Society, 1987, 109, 7466-7472.	13.7	50
50	Hemilabile Ligands in Organolithium Chemistry:  Substituent Effects on Lithium Ion Chelation. Journal of the American Chemical Society, 2003, 125, 15376-15387.	13.7	50
51	Methode der kontinuierlichen Variation: Verwendung von Jobâ€Plots zur Untersuchung molekularer Assoziationen in der metallorganischen Chemie. Angewandte Chemie, 2013, 125, 12218-12234.	2.0	50
52	Ketone Enolization by Lithium Hexamethyldisilazide:Â Structural and Rate Studies of the Accelerating Effects of Trialkylamines. Journal of the American Chemical Society, 2003, 125, 14411-14424.	13.7	49
53	Mechanism of Lithium Diisopropylamide-Mediated Ester Deprotonation:Â The Role of Disolvated Monomers. Journal of the American Chemical Society, 1997, 119, 4765-4766.	13.7	47
54	Lithium 2,2,6,6-Tetramethylpiperidide-Mediated \hat{l}_{\pm} - and \hat{l}^2 -Lithiations of Epoxides:Â Solvent-Dependent Mechanisms. Journal of the American Chemical Society, 2003, 125, 15893-15901.	13.7	47

#	Article	IF	CITATIONS
55	Solvation of Lithium Hexamethyldisilazide by N,N-Dimethylethylenediamine:  Effects of Chelation on Competitive Solvation and Mixed Aggregation. Journal of the American Chemical Society, 1996, 118, 3529-3530.	13.7	46
56	BF3-Mediated Additions of Organolithiums to Ketimines:Â X-ray Crystal Structures of BF3â^'Ketimine Complexes. Journal of Organic Chemistry, 2005, 70, 2335-2337.	3.2	46
57	Solution Structures of Lithium Monoalkylamides (RNHLi). Organometallics, 1999, 18, 2981-2987.	2.3	44
58	Structural and Rate Studies of the 1,2-Additions of Lithium Phenylacetylide to Lithiated Quinazolinones:Â Influence of Mixed Aggregates on the Reaction Mechanism. Journal of the American Chemical Society, 2004, 126, 5427-5435.	13.7	44
59	Chelation-Based Stabilization of the Transition Structure in a Lithium Diisopropylamide Mediated Dehydrobromination: Avoiding the "Universal Ground State―Assumption. Journal of the American Chemical Society, 1997, 119, 5573-5582.	13.7	42
60	Sodium Diisopropylamide in <i>N,N</i> -Dimethylethylamine: Reactivity, Selectivity, and Synthetic Utility. Journal of Organic Chemistry, 2016, 81, 11312-11315.	3.2	42
61	Sodium Diisopropylamide: Aggregation, Solvation, and Stability. Journal of the American Chemical Society, 2017, 139, 7921-7930.	13.7	42
62	NMR Spectroscopic Investigations of Mixed Aggregates Underlying Highly Enantioselective 1,2-Additions of Lithium Cyclopropylacetylide to Quinazolinones. Journal of the American Chemical Society, 2001, 123, 9135-9143.	13.7	41
63	Lithium Phenolates Solvated by Tetrahydrofuran and 1,2-Dimethoxyethane: Structure Determination Using the Method of Continuous Variation. Journal of the American Chemical Society, 2009, 131, 13142-13154.	13.7	39
64	On the origin of the stereoselectivity of hydrazone alkylations. Investigation of aggregation effects and solution kinetics. Journal of the American Chemical Society, 1985, 107, 2078-2082.	13.7	37
65	Structure and Reactivity of Lithium Diisopropylamide Solvated by Polyamines:Â Evidence of Monomerand Dimer-Based Dehydrohalogenations. Journal of the American Chemical Society, 1998, 120, 4081-4086.	13.7	37
66	Solution Structures and Reactivities of the Mixed Aggregates Derived fromn-Butyllithium and Vicinal Amino Alkoxides. Journal of the American Chemical Society, 2001, 123, 8039-8046.	13.7	37
67	Synthesis of a 7-Azaindole by Chichibabin Cyclization: Reversible Base-Mediated Dimerization of 3-Picolines. Journal of Organic Chemistry, 2008, 73, 9610-9618.	3.2	37
68	Lithium-6, carbon-13, and nitrogen-15 NMR spectroscopic studies of lithium dialkylamides. Solution structure of lithium isopropylcyclohexylamide (LICA) in tetrahydrofuran. Journal of the American Chemical Society, 1988, 110, 2658-2660.	13.7	35
69	Lithium Diisopropylamide-Mediated Lithiations of Imines:Â Insights into Highly Structure-Dependent Rates and Selectivities. Journal of the American Chemical Society, 2003, 125, 15114-15127.	13.7	34
70	Structure ofn-Butyllithium in Mixtures of Ethers and Diamines:Â Influence of Mixed Solvation on 1,2-Additions to Imines. Journal of the American Chemical Society, 2006, 128, 9355-9360.	13.7	34
71	Lithium Diisopropylamide-Mediated Reactions of Imines, Unsaturated Esters, Epoxides, and Aryl Carbamates:  Influence of Hexamethylphosphoramide and Ethereal Cosolvents on Reaction Mechanisms. Journal of the American Chemical Society, 2007, 129, 14818-14825.	13.7	34
72	Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Alkene Isomerizations and Diene Metalations. Journal of the American Chemical Society, 2017, 139, 11544-11549.	13.7	34

#	Article	IF	Citations
73	Metalation of imines by lithium diisopropylamide solvated by N,N,N',N'-tetramethylethylenediamine: evidence for solvent-free open dimer reactive intermediates. Journal of the American Chemical Society, 1993, 115, 789-790.	13.7	33
74	Structural and Rate Studies of the Formation of Substituted Benzynes. Journal of the American Chemical Society, 2008, 130, 3406-3412.	13.7	33
75	Solution Structures of the Mixed Aggregates Derived from Lithium Acetylides and a Camphor-Derived Amino Alkoxide. Journal of Organic Chemistry, 2001, 66, 6291-6298.	3.2	32
76	Lithium Diisopropylamide Solvated by Hexamethylphosphoramide:Â Substrate-Dependent Mechanisms for Dehydrobrominations. Journal of the American Chemical Society, 2006, 128, 15399-15404.	13.7	32
77	Autocatalysis in Lithium Diisopropylamide-Mediated Ortholithiations. Journal of the American Chemical Society, 2008, 130, 18008-18017.	13.7	32
78	Solution Structures of Lithium Enolates, Phenolates, Carboxylates, and Alkoxides in the Presence of N,N,N′,N′-Tetramethylethylenediamine: A Prevalence of Cyclic Dimers. Journal of Organic Chemistry, 2008, 73, 7743-7747.	3.2	32
79	Reaction of Ketones with Lithium Hexamethyldisilazide:  Competitive Enolizations and 1,2-Additions. Journal of the American Chemical Society, 2004, 126, 3113-3118.	13.7	31
80	Formation of Benzynes from 2,6-Dihaloaryllithiums:Â Mechanistic Basis of the Regioselectivity. Journal of the American Chemical Society, 2004, 126, 14700-14701.	13.7	31
81	Evans Enolates: Solution Structures of Lithiated Oxazolidinone-Derived Enolates. Journal of the American Chemical Society, 2015, 137, 13087-13095.	13.7	30
82	Computational Studies of Lithium Diisopropylamide Deaggregation. Journal of Organic Chemistry, 2011, 76, 7985-7993.	3.2	29
83	Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide. Synthesis, 2020, 52, 1478-1497.	2.3	29
84	Reversible Enolization of \hat{l}^2 -Amino Carboxamides by Lithium Hexamethyldisilazide. Journal of the American Chemical Society, 2005, 127, 5655-5661.	13.7	28
85	Experimental Characterization and Computational Study of Unique C,N-Chelated Lithium Dianions. Journal of the American Chemical Society, 2010, 132, 13212-13213.	13.7	28
86	Characterization of \hat{l}^2 -Amino Ester Enolates as Hexamers via 6Li NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 5938-5939.	13.7	27
87	Lithium Hexamethyldisilazide-Mediated Enolization of Highly Substituted Aryl Ketones: Structural and Mechanistic Basis of the $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Selectivities. Journal of the American Chemical Society, 2017, 139, 12182-12189.	13.7	27
88	Solution Structure of Lithium Dicyclohexylamide (Cy2NLi) and Related Mixed Aggregates:Â Comparison with Lithium Diisopropylamide. Journal of Organic Chemistry, 1996, 61, 8674-8676.	3.2	25
89	Lithium Hexamethyldisilazide-Mediated Enolizations:  Influence of Chelating Ligands and Hydrocarbon Cosolvents on the Rates and Mechanisms. Journal of the American Chemical Society, 2007, 129, 12023-12031.	13.7	25
90	Lithium Diisopropylamide: Nonequilibrium Kinetics and Lessons Learned about Rate Limitation. Journal of Organic Chemistry, 2017, 82, 4513-4532.	3.2	24

#	Article	IF	Citations
91	6Lii£¿15N heteronuclear multiple quantum correlation (HMQC) spectroscopy: Application to the structure determination of lithium 2,2,6,6-tetramethylpiperidide mixed aggregates. Magnetic Resonance in Chemistry, 1992, 30, 855-859.	1.9	23
92	Structure–Reactivity Relationships in Lithiated Evans Enolates: Influence of Aggregation and Solvation on the Stereochemistry and Mechanism of Aldol Additions. Journal of the American Chemical Society, 2016, 138, 345-355.	13.7	23
93	Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Arene Metalations. Journal of the American Chemical Society, 2017, 139, 15197-15204.	13.7	23
94	Enantioselective Alkylation of 2-Alkylpyridines Controlled by Organolithium Aggregation. Journal of the American Chemical Society, 2019, 141, 15024-15028.	13.7	23
95	Aggregation and Solvation of Sodium Hexamethyldisilazide: Across the Solvent Spectrum. Journal of Organic Chemistry, 2021, 86, 2406-2422.	3.2	23
96	Structures of \hat{I}^2 -Amino Ester Enolates: New Strategies Using the Method of Continuous Variation. Journal of the American Chemical Society, 2008, 130, 17334-17341.	13.7	22
97	Lithium Diisopropylamide-Mediated Ortholithiation of 2-Fluoropyridines: Rates, Mechanisms, and the Role of Autocatalysis. Journal of Organic Chemistry, 2013, 78, 4214-4230.	3.2	22
98	Structures and Reactivities of Sodiated Evans Enolates: Role of Solvation and Mixed Aggregation on the Stereochemistry and Mechanism of Alkylations. Journal of the American Chemical Society, 2019, 141, 388-401.	13.7	22
99	Conversion of ketones to trisubstituted olefins under neutral conditions. Tetrahedron Letters, 1984, 25, 271-272.	1.4	21
100	Addition ofn-Butyllithium to an Aldimine:Â Role of Chelation, Aggregation, and Cooperative Solvation. Journal of the American Chemical Society, 2005, 127, 10820-10821.	13.7	20
101	Mechanism of Lithium Diisopropylamide-Mediated Substitution of 2,6-Difluoropyridine. Journal of the American Chemical Society, 2010, 132, 6361-6365.	13.7	19
102	Method of Continuous Variation: Characterization of Alkali Metal Enolates Using1H and19F NMR Spectroscopies. Journal of the American Chemical Society, 2014, 136, 9710-9718.	13.7	19
103	Case for Lithium Tetramethylpiperidide-Mediated Ortholithiations: Reactivity and Mechanisms. Journal of the American Chemical Society, 2018, 140, 4877-4883.	13.7	19
104	Sodium Hexamethyldisilazide: Using ¹⁵ N– ²⁹ Si Scalar Coupling to Determine Aggregation and Solvation States. Journal of the American Chemical Society, 2020, 142, 6852-6855.	13.7	19
105	Aryl Carbamates: Mechanisms of Orthosodiations and Snieckus–Fries Rearrangements. Journal of Organic Chemistry, 2019, 84, 9051-9057.	3.2	18
106	Lithium Hexamethyldisilazide-Mediated Ketone Enolization:Â The Influence of Hindered Dialkyl Ethers and Isostructural Dialkylamines on Reaction Rates and Mechanisms. Journal of Organic Chemistry, 2004, 69, 242-249.	3.2	17
107	Solid-State and Solution Structures of Glycinimine-Derived Lithium Enolates. Journal of the American Chemical Society, 2015, 137, 14446-14455.	13.7	17
108	Ketone Enolization with Sodium Hexamethyldisilazide: Solvent- and Substrate-Dependent $\langle i\rangle E\langle i\rangle \hat{a}\in (i) Z\langle i\rangle Selectivity$ and Affiliated Mechanisms. Journal of the American Chemical Society, 2021, 143, 17452-17464.	13.7	17

#	Article	IF	CITATIONS
109	Lithium Amino Alkoxide–Evans Enolate Mixed Aggregates: Aldol Addition with Matched and Mismatched Stereocontrol. Journal of the American Chemical Society, 2018, 140, 3077-3090.	13.7	16
110	Lithium Hexamethyldisilazide-Mediated Enolization of Acylated Oxazolidinones: Solvent, Cosolvent, and Isotope Effects on Competing Monomer- and Dimer-Based Pathways. Journal of the American Chemical Society, 2017, 139, 1233-1244.	13.7	15
111	Sodium Diisopropylamide-Mediated Dehydrohalogenations: Influence of Primary- and Secondary-Shell Solvation. Journal of Organic Chemistry, 2019, 84, 10860-10869.	3.2	15
112	Disodium Salts of Pseudoephedrine-Derived Myers Enolates: Stereoselectivity and Mechanism of Alkylation. Journal of the American Chemical Society, 2019, 141, 16865-16876.	13.7	15
113	Solution Structures of Lithium Amino Alkoxides Used in Highly Enantioselective 1,2-Additions. Journal of the American Chemical Society, 2014, 136, 2885-2891.	13.7	14
114	Evans Enolates: Structures and Mechanisms Underlying the Aldol Addition of Oxazolidinone-Derived Boron Enolates. Journal of Organic Chemistry, 2017, 82, 7595-7601.	3.2	14
115	Azaaldol Condensation of a Lithium Enolate Solvated byN,N,N′,N′-Tetramethylethylenediamine: Dimer-Based 1,2-Addition to Imines. Journal of the American Chemical Society, 2013, 135, 4103-4109.	13.7	13
116	Lithium Diisopropylamide-Mediated Lithiation of 1,4-Difluorobenzene under Nonequilibrium Conditions: Role of Monomer-, Dimer-, and Tetramer-Based Intermediates and Lessons about Rate Limitation. Journal of Organic Chemistry, 2014, 79, 11885-11902.	3.2	13
117	Mechanism of Lithium Diisopropylamide-Mediated Ortholithiation of 1,4-Bis(trifluoromethyl)benzene under Nonequilibrium Conditions: Condition-Dependent Rate Limitation and Lithium Chloride-Catalyzed Inhibition. Journal of the American Chemical Society, 2015, 137, 6292-6303.	13.7	13
118	Reactions of Sodium Diisopropylamide: Liquid-Phase and Solid–Liquid Phase-Transfer Catalysis by <i>N</i> , <i>N</i> , <i>N</i> ,6>N,6>N,1>3€3-Pentamethyldiethylenetriamine. Journal of the American Chemical Society, 2021, 143, 13370-13381.	13.7	13
119	Structure Determination Using the Method of Continuous Variation: Lithium Phenolates Solvated by Protic and Dipolar Aprotic Ligands. Journal of Organic Chemistry, 2013, 78, 7498-7507.	3.2	12
120	Pseudoephedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism. Journal of the American Chemical Society, 2019, 141, 5444-5460.	13.7	12
121	Optimizing HMQC for ISn spin systems. Magnetic Resonance in Chemistry, 2001, 39, 137-140.	1.9	11
122	Mixed Aggregates of the Dilithiated Koga Tetraamine: NMR Spectroscopic and Computational Studies. Angewandte Chemie - International Edition, 2016, 55, 10093-10097.	13.8	11
123	Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation. Journal of Organic Chemistry, 2010, 75, 8392-8399.	3.2	10
124	Lithium Enolates Derived from Weinreb Amides: Insights into Five-Membered Chelate Rings. Journal of Organic Chemistry, 2016, 81, 11057-11064.	3.2	9
125	Lithium Enolates Derived from Pyroglutaminol: Mechanism and Stereoselectivity of an Azaaldol Addition. Journal of the American Chemical Society, 2016, 138, 10276-10283.	13.7	8
126	Mixed Aggregates of the Dilithiated Koga Tetraamine: NMR Spectroscopic and Computational Studies. Angewandte Chemie, 2016, 128, 10247-10251.	2.0	7

#	Article	IF	CITATIONS
127	Wittig Rearrangements of Boron-Based Oxazolidinone Enolates. Journal of Organic Chemistry, 2019, 84, 10892-10900.	3.2	7
128	Lithium Enolates Derived from Pyroglutaminol: Aggregation, Solvation, and Atropisomerism. Journal of Organic Chemistry, 2016, 81, 4149-4157.	3.2	6