Madan K Bhattacharyya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5095780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
2	Overexpression of a plasma membrane protein generated broadâ€spectrum immunity in soybean. Plant Biotechnology Journal, 2021, 19, 502-516.	8.3	13
3	A Robust and Rapid Candidate Gene Mapping Pipeline Based on M2 Populations. Frontiers in Plant Science, 2021, 12, 681816.	3.6	6
4	Arabidopsis nonâ€host resistance <i>PSS30</i> gene enhances broadâ€spectrum disease resistance in the soybean cultivar Williams 82. Plant Journal, 2021, 107, 1432-1446.	5.7	8
5	Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistanceÂin soybean. Scientific Reports, 2021, 11, 16907.	3.3	11
6	Interaction of Phytophthora sojae Effector Avr1b With E3 Ubiquitin Ligase GmPUB1 Is Required for Recognition by Soybeans Carrying Phytophthora Resistance Rps1-b and Rps1-k Genes. Frontiers in Plant Science, 2021, 12, 725571.	3.6	10
7	Genome wide association study identifies novel single nucleotide polymorphic loci and candidate genes involved in soybean sudden death syndrome resistance. PLoS ONE, 2019, 14, e0212071.	2.5	11
8	Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations. Theoretical and Applied Genetics, 2018, 131, 1047-1062.	3.6	13
9	Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants. Plant Physiology, 2018, 176, 865-878.	4.8	17
10	Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean. Scientific Reports, 2017, 7, 44365.	3.3	12
11	Transposon-Based Functional Characterization of Soybean Genes. Compendium of Plant Genomes, 2017, , 183-192.	0.5	0
12	A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes. PLoS ONE, 2017, 12, e0169950.	2.5	68
13	Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis. PLoS ONE, 2017, 12, e0169963.	2.5	11
14	The endogenous transposable element Tgm9 is suitable for generating knockout mutants for functional analyses of soybean genes and genetic improvement in soybean. PLoS ONE, 2017, 12, e0180732.	2.5	7
15	Identification of Highly Variable Supernumerary Chromosome Segments in an Asexual Pathogen. PLoS ONE, 2016, 11, e0158183.	2.5	12
16	Novel Sources of Partial Resistance against <i>Phytophthora sojae</i> in Soybean PI 399036. Crop Science, 2016, 56, 2322-2335.	1.8	23
17	Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput. Biomicrofluidics, 2016, 10, 034108.	2.4	10
18	Identification of a soybean rust resistance gene in PI 567104B. Theoretical and Applied Genetics, 2016, 129. 863-877.	3.6	13

#	Article	IF	CITATIONS
19	The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. Plant Science, 2016, 243, 105-114.	3.6	27
20	Study of the Interactions of <i>Fusarium virguliforme</i> Toxin FvTox1 with Synthetic Peptides by Molecular Simulations and a Label-Free Biosensor. Analytical Chemistry, 2016, 88, 3024-3030.	6.5	8
21	Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. Theoretical and Applied Genetics, 2016, 129, 495-506.	3.6	25
22	Transposon Tagging of a Male-Sterility, Female-Sterility Gene, St8, Revealed that the Meiotic MER3 DNA Helicase Activity Is Essential for Fertility in Soybean. PLoS ONE, 2016, 11, e0150482.	2.5	8
23	Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants. PLoS ONE, 2016, 11, e0163106.	2.5	22
24	Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean. PLoS ONE, 2015, 10, e0145156.	2.5	7
25	Analyses of the Xylem Sap Proteomes Identified Candidate Fusarium virguliforme Proteinacious Toxins. PLoS ONE, 2014, 9, e93667.	2.5	31
26	Genetic architecture and evolution of the mating type locus in fusaria that cause soybean sudden death syndrome and bean root rot. Mycologia, 2014, 106, 686-697.	1.9	30
27	The Genome Sequence of the Fungal Pathogen Fusarium virguliforme That Causes Sudden Death Syndrome in Soybean. PLoS ONE, 2014, 9, e81832.	2.5	50
28	Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Current Genetics, 2013, 59, 107-117.	1.7	44
29	A candidate male-fertility female-fertility gene tagged by the soybean endogenous transposon, Tgm9. Functional and Integrative Genomics, 2013, 13, 67-73.	3.5	13
30	Molecular Mapping of D1, D2 and ms5 Revealed Linkage between the Cotyledon Color Locus D2 and the Male-Sterile Locus ms5 in Soybean. Plants, 2013, 2, 441-454.	3.5	10
31	Expression of a Single-Chain Variable-Fragment Antibody Against a Fusarium virguliforme Toxin Peptide Enhances Tolerance to Sudden Death Syndrome in Transgenic Soybean Plants. Molecular Plant-Microbe Interactions, 2012, 25, 817-824.	2.6	41
32	Segregation distortion in a region containing a male-sterility, female-sterility locus in soybean. Plant Science, 2012, 195, 151-156.	3.6	25
33	Arabidopsis nonhost resistance gene PSS1confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean. BMC Plant Biology, 2012, 12, 87.	3.6	25
34	Sequence based polymorphic (SBP) marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome. BMC Genomics, 2012, 13, 20.	2.8	20
35	The Fusarium virguliforme Toxin FvTox1 Causes Foliar Sudden Death Syndrome-Like Symptoms in Soybean. Molecular Plant-Microbe Interactions, 2011, 24, 1179-1188.	2.6	66
36	Plant pathogen spores grow in microfluidic droplets: A high-throughput approach to antifungal drug		0

screening. , 2011, , .

#	Article	IF	CITATIONS
37	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854
38	Excision of an Active CACTA-Like Transposable Element From DFR2 Causes Variegated Flowers in Soybean [Glycine max (L.) Merr.]. Genetics, 2010, 184, 53-63.	2.9	42
39	Map-based Cloning of Genes and QTLs in Soybean. , 2010, , 169-186.		2
40	Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1. BMC Plant Biology, 2009, 9, 105.	3.6	68
41	Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean–Phytophthora sojae interaction. Theoretical and Applied Genetics, 2009, 118, 399-412.	3.6	13
42	Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008, 46, 627-637.	5.8	106
43	The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences. BMC Plant Biology, 2008, 8, 29.	3.6	100
44	Enhanced Oleic Acid Content in the Soybean Mutant M23 Is Associated with the Deletion in the Fad2-1a Gene Encoding a Fatty Acid Desaturase. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 229-235.	1.9	39
45	Two Classes of Highly Similar Coiled Coil-Nucleotide Binding-Leucine Rich Repeat Genes Isolated from the Rps1-k Locus Encode Phytophthora Resistance in Soybean. Molecular Plant-Microbe Interactions, 2005, 18, 1035-1045.	2.6	133
46	Deletion of a Disease Resistance Nucleotide-Binding-Site Leucine-Rich- Repeat-like Sequence Is Associated With the Loss of the Phytophthora Resistance Gene Rps4 in Soybean. Genetics, 2004, 168, 2157-2167.	2.9	98
47	Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region. Functional and Integrative Genomics, 2003, 3, 153-159.	3.5	7
48	Genetic and Physical Mapping of Avr1a in Phytophthora sojae. Genetics, 2002, 160, 949-959.	2.9	47
49	The Matrix Metalloproteinase Gene GmMMP2 Is Activated in Response to Pathogenic Infections in Soybean. Plant Physiology, 2001, 127, 1788-1797.	4.8	70
50	Towards Understanding the Recognition and Signal Transduction Processes in the Soybean-Phytophthora Sojae Interaction. , 2001, , 227-239.		1
51	High Resolution Genetic and Physical Mapping of Molecular Markers Linked to the Phytophthora Resistance Gene Rps1-k in Soybean. Molecular Plant-Microbe Interactions, 1997, 10, 1035-1044.	2.6	63
52	A copia-like retrotransposon Tgmr closely linked to the Rps1-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Molecular Biology, 1997, 34, 255-264.	3.9	30
53	Reduced variation in transgene expression from a binary vector with selectable markers at the right and left T-DNA borders. Plant Journal, 1994, 6, 957-968.	5.7	51