Jose P Lopez-Atalaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/509427/publications.pdf

Version: 2024-02-01

39 papers 2,153 citations

218677 26 h-index 302126 39 g-index

45 all docs

45 docs citations

45 times ranked

2948 citing authors

#	Article	IF	CITATIONS
1	Secondary loss of <i>miR-3607</i> reduced cortical progenitor amplification during rodent evolution. Science Advances, 2022, 8, eabj4010.	10.3	15
2	A protocol to extract cell-type-specific signatures from differentially expressed genes in bulk-tissue RNA-seq. STAR Protocols, 2022, 3, 101121.	1.2	10
3	Transcriptional regulation of chemokine network by biologic monotherapy in ileum of patients with Crohn's disease. Biomedicine and Pharmacotherapy, 2022, 147, 112653.	5.6	5
4	Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Science Advances, 2021, 7, .	10.3	65
5	Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Reports, 2021, 35, 109229.	6.4	20
6	SFRP1 modulates astrocyteâ€toâ€microglia crosstalk in acute and chronic neuroinflammation. EMBO Reports, 2021, 22, e51696.	4.5	27
7	A Zic2-regulated switch in a noncanonical Wnt/ \hat{l}^2 catenin pathway is essential for the formation of bilateral circuits. Science Advances, 2020, 6, .	10.3	20
8	KAT3-dependent acetylation of cell type-specific genes maintains neuronal identity in the adult mouse brain. Nature Communications, 2020, 11, 2588.	12.8	26
9	Repression of Irs2 by letâ€7 mi <scp>RNA</scp> s is essential for homeostasis of the telencephalic neuroepithelium. EMBO Journal, 2020, 39, e105479.	7.8	12
10	Ecdysone-Induced 3D Chromatin Reorganization Involves Active Enhancers Bound by Pipsqueak and Polycomb. Cell Reports, 2019, 28, 2715-2727.e5.	6.4	32
11	Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Science Translational Medicine, 2019, 11 , .	12.4	79
12	Development and maintenance of the brain's immune toolkit: Microglia and nonâ€parenchymal brain macrophages. Developmental Neurobiology, 2018, 78, 561-579.	3.0	38
13	Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons. Cell Reports, 2017, 21, 47-59.	6.4	89
14	Lack of IL-1R8 in neurons causes hyperactivation of IL-1 receptor pathway and induces MECP2-dependent synaptic defects. ELife, 2017, 6, .	6.0	32
15	Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness. Cerebral Cortex, 2016, 26, 1619-1633.	2.9	44
16	Specific promoter deacetylation of histone H3 is conserved across mouse models of Huntington's disease in the absence of bulk changes. Neurobiology of Disease, 2016, 89, 190-201.	4.4	17
17	Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry. Scientific Reports, 2015, 5, 16256.	3.3	4
18	Epigenetic Factors in Intellectual Disability. Progress in Molecular Biology and Translational Science, 2014, 128, 139-176.	1.7	34

#	Article	IF	CITATIONS
19	Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction. Nature Communications, 2014, 5, 4450.	12.8	33
20	Can changes in histone acetylation contribute to memory formation?. Trends in Genetics, 2014, 30, 529-539.	6.7	68
21	Genomic Landscape of Transcriptional and Epigenetic Dysregulation in Early Onset Polyglutamine Disease. Journal of Neuroscience, 2013, 33, 10471-10482.	3.6	67
22	Histone H3 lysine methylation in cognition and intellectual disability disorders. Learning and Memory, 2013, 20, 570-579.	1.3	52
23	Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Research, 2013, 41, 8072-8084.	14.5	95
24	Lysine Acetyltransferases CBP and p300 as Therapeutic Targets in Cognitive and Neurodegenerative Disorders. Current Pharmaceutical Design, 2013, 19, 5051-5064.	1.9	133
25	Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein–Taybi syndrome. Journal of Medical Genetics, 2012, 49, 66-74.	3.2	58
26	CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO Journal, 2011, 30, 4287-4298.	7.8	89
27	Syndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: Differential contribution of p300 and CBP to Rubinstein–Taybi syndrome etiology. Neurobiology of Disease, 2010, 37, 186-194.	4.4	53
28	Selective Boosting of Transcriptional and Behavioral Responses to Drugs of Abuse by Histone Deacetylase Inhibition. Neuropsychopharmacology, 2009, 34, 2642-2654.	5 . 4	127
29	Toward Safer Thrombolytic Agents in Stroke: Molecular Requirements for NMDA Receptor-Mediated Neurotoxicity. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1212-1221.	4.3	74
30	Hunting for Synaptic Tagging and Capture in Memory Formation. Journal of Neuroscience, 2007, 27, 12761-12763.	3.6	5
31	Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. Journal of Cell Science, 2007, 120, 578-585.	2.0	66
32	RecombinantDesmodus rotundusSalivary Plasminogen Activator Crosses the Blood–Brain Barrier Through a Low-Density Lipoprotein Receptor-Related Protein-Dependent Mechanism Without Exerting Neurotoxic Effects. Stroke, 2007, 38, 1036-1043.	2.0	55
33	Tissue-type plasminogen activator rescues neurones from serum deprivation-induced apoptosis through a mechanism independent of its proteolytic activity. Journal of Neurochemistry, 2006, 98, 1458-1464.	3.9	66
34	Tissue-Type Plasminogen Activator Crosses the Intact Blood-Brain Barrier by Low-Density Lipoprotein Receptor–Related Protein-Mediated Transcytosis. Circulation, 2005, 111, 2241-2249.	1.6	166
35	The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Molecular and Cellular Neurosciences, 2005, 30, 552-558.	2.2	71
36	Arginine 260 of the Amino-terminal Domain of NR1 Subunit Is Critical for Tissue-type Plasminogen Activator-mediated Enhancement of N-Methyl-D-aspartate Receptor Signaling. Journal of Biological Chemistry, 2004, 279, 50850-50856.	3.4	116

#	Article	IF	CITATIONS
37	2,7-Bis-(4-Amidinobenzylidene)-Cycloheptan-1-One Dihydrochloride, tPA Stop, Prevents tPA-Enhanced Excitotoxicity Both In Vitro and In Vivo. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1153-1159.	4.3	20
38	Equivocal roles of tissue-type plasminogen activator in stroke-induced injury. Trends in Neurosciences, 2004, 27, 155-160.	8.6	97
39	Is tissue-type plasminogen activator a neuromodulator?. Molecular and Cellular Neurosciences, 2004, 25, 594-601.	2.2	65