Michaela Frye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5094172/publications.pdf

Version: 2024-02-01

53 papers 7,498 citations

39 h-index 50 g-index

56 all docs 56 docs citations

56 times ranked 7859 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 2022, 607, 593-603.	27.8	102
2	Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Research, 2021, 49, 1006-1022.	14.5	83
3	CONCUR: quick and robust calculation of codon usage from ribosome profiling data. Bioinformatics, 2021, 37, 717-719.	4.1	5
4	Noncanonical functions of the serineâ€arginineâ€ich splicing factor (SR) family of proteins in development and disease. BioEssays, 2021, 43, e2000242.	2.5	34
5	RN7SK small nuclear RNA controls bidirectional transcription of highly expressed gene pairs in skin. Nature Communications, 2021, 12, 5864.	12.8	5
6	NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Research, 2019, 47, 8720-8733.	14.5	84
7	Codon usage optimization in pluripotent embryonic stem cells. Genome Biology, 2019, 20, 119.	8.8	43
8	Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nature Communications, 2019, 10, 2550.	12.8	81
9	Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biology, 2019, 17, e3000297.	5.6	87
10	RNA modifications regulating cell fate in cancer. Nature Cell Biology, 2019, 21, 552-559.	10.3	257
11	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	3.1	18
12	RNA modifications modulate gene expression during development. Science, 2018, 361, 1346-1349.	12.6	762
13	RNA Methylation in theÂControl of Stem Cell Activity and Epidermal Differentiation. Contributions To Management Science, 2018, , 215-229.	0.5	1
14	Considerations for skin carcinogenesis experiments using inducible transgenic mouse models. BMC Research Notes, 2018, 11, 67.	1.4	3
15	Cytosine-5 RNA Methylation Regulates Neural Stem Cell Differentiation andÂMotility. Stem Cell Reports, 2017, 8, 112-124.	4.8	141
16	RNA modifications: what have we learned and where are we headed?. Nature Reviews Genetics, 2016, 17, 365-372.	16.3	215
17	Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3. Nature Communications, 2016, 7, 12039.	12.8	178
18	Post-transcriptional modifications in development and stem cells. Development (Cambridge), 2016, 143, 3871-3881.	2.5	66

#	Article	IF	Citations
19	Stem cell function and stress response are controlled by protein synthesis. Nature, 2016, 534, 335-340.	27.8	345
20	Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer. Current Opinion in Oncology, 2016, 28, 65-71.	2.4	51
21	Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration. Stem Cells, 2015, 33, 988-998.	3.2	13
22	Aberrant methylation of t <scp>RNA</scp> s links cellular stress to neuroâ€developmental disorders. EMBO Journal, 2014, 33, 2020-2039.	7.8	490
23	Role of RNA methyltransferases in tissue renewal and pathology. Current Opinion in Cell Biology, 2014, 31, 1-7.	5.4	105
24	Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biology, 2013, 14, 215.	9.6	204
25	NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs. Cell Reports, 2013, 4, 255-261.	6.4	448
26	The Mouse Cytosine-5 RNA Methyltransferase NSun2 Is a Component of the Chromatoid Body and Required for Testis Differentiation. Molecular and Cellular Biology, 2013, 33, 1561-1570.	2.3	137
27	The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO Journal, 2012, 31, 616-629.	7.8	71
28	Chromatin regulators in mammalian epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 897-905.	5.0	36
29	Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biology, 2012, 13, R67.	9.6	195
30	Whole exome sequencing identifies a splicing mutation in <i>NSUN2</i> as a cause of a Dubowitz-like syndrome. Journal of Medical Genetics, 2012, 49, 380-385.	3.2	198
31	RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nature Structural and Molecular Biology, 2012, 19, 900-905.	8.2	488
32	Stem cells in ectodermal development. Journal of Molecular Medicine, 2012, 90, 783-790.	3.9	24
33	Mutation in NSUN2, which Encodes an RNA Methyltransferase, Causes Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2012, 90, 856-863.	6.2	189
34	Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4. Cell Stem Cell, 2011, 9, 233-246.	11.1	128
35	Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4. Cell Stem Cell, 2011, 9, 486.	11.1	0
36	The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nature Cell Biology, 2011, 13, 1395-1405.	10.3	57

#	Article	IF	CITATIONS
37	The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate. PLoS Genetics, 2011, 7, e1002403.	3.5	160
38	Genomic gain of 5p15 leads to over-expression of Misu (NSUN2) in breast cancer. Cancer Letters, 2010, 289, 71-80.	7.2	80
39	The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. Journal of Cell Biology, 2009, 186, 27-40.	5.2	125
40	Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis. Cell Stem Cell, 2009, 4, 427-439.	11.1	450
41	Characterization of Bipotential Epidermal Progenitors Derived from Human Sebaceous Gland: Contrasting Roles of c-Myc and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Catenin. Stem Cells, 2008, 26, 1241-1252.	3.2	117
42	MYC in mammalian epidermis: how can an oncogene stimulate differentiation?. Nature Reviews Cancer, 2008, 8, 234-242.	28.4	144
43	Epidermal Stem Cells Are Defined by Global Histone Modifications that Are Altered by Myc-Induced Differentiation. PLoS ONE, 2007, 2, e763.	2.5	89
44	The RNA Methyltransferase Misu (NSun2) Mediates Myc-Induced Proliferation and Is Upregulated in Tumors. Current Biology, 2007, 17, 2002.	3.9	0
45	Die Bedeutung der ZelladhÄßonsmolekĽle fļr die Struktur der Epidermis und Biorhythmik. Fortschritte Der Praktischen Dermatologie Und Venerologie, 2007, , 26-29.	0.0	0
46	The RNA Methyltransferase Misu (NSun2) Mediates Myc-Induced Proliferation and Is Upregulated in Tumors. Current Biology, 2006, 16, 971-981.	3.9	229
47	Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. Journal of Cell Biology, 2006, 172, 139-149.	5.2	108
48	Mitochondrial haplotypes and the New Zealand origin of clonal European Potamopyrgus, an invasive aquatic snail. Molecular Ecology, 2005, 14, 2465-2473.	3.9	57
49	Stem Cell Depletion Through Epidermal Deletion of Rac1. Science, 2005, 309, 933-935.	12.6	243
50	Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development (Cambridge), 2003, 130, 2793-2808.	2.5	163
51	Expression of Human Beta Defensin (HBD-1 and HBD-2) mRNA in Nasal Epithelia of Adult Cystic Fibrosis Patients, Healthy Individuals, and Individuals with Acute Cold. Respiration, 2002, 69, 46-51.	2.6	33
52	Expression of human \hat{l}^2 -defensin-1 promotes differentiation of keratinocytes. Journal of Molecular Medicine, 2001, 79, 275-282.	3.9	55
53	Epithelial Defensins Impair Adenoviral Infection: Implication for Adenovirus-Mediated Gene Therapy. Human Gene Therapy, 1999, 10, 957-964.	2.7	100