
Matteo Stravalaci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5094049/publications.pdf Version: 2024-02-01

MATTEO STRAVALACI

#	Article	IF	CITATIONS
1	Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. Journal of Leukocyte Biology, 2022, 111, 817-836.	3.3	23
2	Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective. International Journal of Molecular Sciences, 2022, 23, 682.	4.1	9
3	Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nature Immunology, 2022, 23, 275-286.	14.5	95
4	Reply to: Hultström et al., Genetic determinants of mannose-binding lectin activity predispose to thromboembolic complications in critical COVID-19. Mannose-binding lectin genetics in COVID-19. Nature Immunology, 2022, 23, 865-867.	14.5	4
5	The Long Pentraxin PTX3 Controls Klebsiella Pneumoniae Severe Infection. Frontiers in Immunology, 2021, 12, 666198.	4.8	8
6	The Long Pentraxin PTX3 as a New Biomarker and Pharmacological Target in Age-Related Macular Degeneration and Diabetic Retinopathy. Frontiers in Pharmacology, 2021, 12, 811344.	3.5	8
7	Control of Complement Activation by the Long Pentraxin PTX3: Implications in Age-Related Macular Degeneration. Frontiers in Pharmacology, 2020, 11, 591908.	3.5	11
8	The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell–mediated resistance to metastasis. Nature Immunology, 2019, 20, 1012-1022.	14.5	75
9	The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Frontiers in Immunology, 2019, 10, 712.	4.8	125
10	Interaction of C1q With Pentraxin 3 and IgM Revisited: Mutational Studies With Recombinant C1q Variants. Frontiers in Immunology, 2019, 10, 461.	4.8	32
11	TNF-Stimulated Gene-6 Is a Key Regulator in Switching Stemness and Biological Properties of Mesenchymal Stem Cells. Stem Cells, 2019, 37, 973-987.	3.2	36
12	Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 938-950.	4.3	35
13	Fingolimod Limits Acute Aβ Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.	3.3	27
14	Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity. Journal of Alzheimer's Disease, 2017, 57, 857-871.	2.6	23
15	An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS ONE, 2017, 12, e0182589.	2.5	19
16	The Anti-Prion Antibody 15B3 Detects Toxic Amyloid-β Oligomers. Journal of Alzheimer's Disease, 2016, 53, 1485-1497.	2.6	12
17	A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Scientific Reports, 2016, 6, 23180.	3.3	34
18	Scaffold Optimisation of Tetravalent Antagonists of the Mannose Binding Lectin. Chemistry - A European Journal, 2016, 22, 3686-3691.	3.3	7

MATTEO STRAVALACI

#	Article	IF	CITATIONS
19	A New Surface Plasmon Resonance Assay for In Vitro Screening of Mannose-Binding Lectin Inhibitors. Journal of Biomolecular Screening, 2016, 21, 749-757.	2.6	9
20	The new β amyloid-derived peptide Aβ1–6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity. Neurobiology of Disease, 2016, 88, 75-84.	4.4	17
21	Clusterin Binds to Al̂²1–42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation. Journal of Biological Chemistry, 2016, 291, 6958-6966.	3.4	99
22	An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. Journal of Experimental Medicine, 2015, 212, 905-925.	8.5	128
23	Exploring the role of MKK7 in excitotoxicity and cerebral ischemia: a novel pharmacological strategy against brain injury. Cell Death and Disease, 2015, 6, e1854-e1854.	6.3	29
24	An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. Journal of Cell Biology, 2015, 209, 2094OIA93.	5.2	0
25	A New Surface Plasmon Resonance-Based Immunoassay for Rapid, Reproducible and Sensitive Quantification of Pentraxin-3 in Human Plasma. Sensors, 2014, 14, 10864-10875.	3.8	16
26	Expression of A2V-mutated Aβ in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiology of Disease, 2014, 62, 521-532.	4.4	30
27	P3-068: CLUSTERIN REDUCES THE FORMATION OF BIOLOGICAL RELEVANT TOXIC SOLUBLE ABETA1-42 OLIGOMERS. , 2014, 10, P651-P652.		Ο
28	New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: The role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. European Journal of Cancer, 2013, 49, 1491-1500.	2.8	14
29	Novel approaches for studying amyloidogenic peptides/proteins. Current Opinion in Pharmacology, 2013, 13, 797-801.	3.5	15
30	Epitope scanning indicates structural differences in brain-derived monomeric and aggregated mutant prion proteins related to genetic prion diseases. Biochemical Journal, 2013, 454, 417-425.	3.7	12
31	An N-terminal Fragment of the Prion Protein Binds to Amyloid-β Oligomers and Inhibits Their Neurotoxicity in Vivo. Journal of Biological Chemistry, 2013, 288, 7857-7866.	3.4	162
32	Applications of Surface Plasmon Resonance (SPR) for the Characterization of Nanoparticles Developed for Biomedical Purposes. Sensors, 2012, 12, 16420-16432.	3.8	59
33	Targeting Mannose-Binding Lectin Confers Long-Lasting Protection With a Surprisingly Wide Therapeutic Window in Cerebral Ischemia. Circulation, 2012, 126, 1484-1494.	1.6	119
34	Targeting MBL in cerebral ischemia induces long lasting protection with a wide therapeutic window. Immunobiology, 2012, 217, 1207.	1.9	0
35	Specific Recognition of Biologically Active Amyloid-β Oligomers by a New Surface Plasmon Resonance-based Immunoassay and an in Vivo Assay in Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 27796-27805.	3.4	52
36	Good gene, bad gene: New APP variant may be both. Progress in Neurobiology, 2012, 99, 281-292.	5.7	31

MATTEO STRAVALACI

#	Article	IF	CITATION
37	Mannose binding lectin as a target for cerebral ischemic injury. Molecular Immunology, 2011, 48, 1677.	2.2	2
38	Use of surface plasmon resonance to study the elongation kinetics and the binding properties of the highly amyloidogenic Al̃21–42 peptide, synthesized by depsi-peptide technique. Biosensors and Bioelectronics, 2011, 26, 2772-2775.	10.1	36
39	A modified protocol to prepare seed-free starting solutions of amyloid-β (Aβ)1–40 and Aβ1–42 from the corresponding depsipeptides. Analytical Biochemistry, 2011, 411, 297-299.	2.4	38
40	Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. Journal of Immunology, 2011, 187, 172-180.	0.8	220
41	Functional analysis of a murine monoclonal antibody against the repetitive region of the fibronectin-binding adhesins fibronectin-binding protein A and fibronectin-binding protein B from Staphylococcus aureus. FEBS Journal, 2010, 277, 4490-4505.	4.7	7
42	Non-peptidic Thrombospondin-1 Mimics as Fibroblast Growth Factor-2 Inhibitors. Journal of Biological Chemistry, 2010, 285, 8733-8742.	3.4	70
43	Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2295-2300.	7.1	435
44	Recombinant C1 inhibitor in brain ischemic injury. Annals of Neurology, 2009, 66, 332-342.	5.3	107
45	Immunopurification of Pathological Prion Protein Aggregates. PLoS ONE, 2009, 4, e7816.	2.5	17