
Marion Kusche-Gullberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093926/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dominant negative splice variant of the heparan sulfate biosynthesis enzyme NDST1 reduces heparan sulfate sulfation. Glycobiology, 2022, , .	2.5	4
2	Heparan sulfate dependent binding of plasmatic von Willebrand factor to blood circulating melanoma cells attenuates metastasis. Matrix Biology, 2022, 111, 76-94.	3.6	3
3	Heparan sulfate in chronic kidney diseases: Exploring the role of 3-O-sulfation. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 839-848.	2.4	9
4	Potential role for Ext1-dependent heparan sulfate in regulating P311 gene expression in A549 carcinoma cells. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1472-1481.	2.4	6
5	Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. Laboratory Investigation, 2018, 98, 427-438.	3.7	33
6	The exostosin family of glycosyltransferases: mRNA expression profiles and heparan sulphate structure in human breast carcinoma cell lines. Bioscience Reports, 2018, 38, .	2.4	26
7	Role of the Extracellular Matrix in Tumor Stroma: Barrier or Support?. , 2017, , 77-112.		0
8	Reduced Expression of EXTL2, a Member of the Exostosin (EXT) Family of Glycosyltransferases, in Human Embryonic Kidney 293 Cells Results in Longer Heparan Sulfate Chains. Journal of Biological Chemistry, 2015, 290, 13168-13177.	3.4	13
9	Role of 6-O-Sulfated Heparan Sulfate in Chronic Renal Fibrosis. Journal of Biological Chemistry, 2014, 289, 20295-20306.	3.4	26
10	The extostosin family: Proteins with many functions. Matrix Biology, 2014, 35, 25-33.	3.6	106
11	Fibroblast α11β1 Integrin Regulates Tensional Homeostasis in Fibroblast/A549 Carcinoma Heterospheroids. PLoS ONE, 2014, 9, e103173.	2.5	22
12	Drosophila Heparan Sulfate, a Novel Design. Journal of Biological Chemistry, 2012, 287, 21950-21956.	3.4	20
13	Fibroblast EXT1-Levels Influence Tumor Cell Proliferation and Migration in Composite Spheroids. PLoS ONE, 2012, 7, e41334.	2.5	21
14	Heparan sulfate expression is affected by inflammatory stimuli in primary human endothelial cells. Glycoconjugate Journal, 2012, 29, 67-76.	2.7	15
15	Target selection of heparan sulfate hexuronic acid 2-O-sulfotransferase. Glycobiology, 2010, 20, 1274-1282.	2.5	18
16	Mutation in the Heparan Sulfate Biosynthesis Enzyme EXT1 Influences Growth Factor Signaling and Fibroblast Interactions with the Extracellular Matrix. Journal of Biological Chemistry, 2009, 284, 34935-34943.	3.4	34
17	Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in <i>Nematostella vectensis</i> . Biochemical Journal, 2009, 419, 585-593.	3.7	19
18	Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4751-4756.	7.1	151

#	Article	IF	CITATIONS
19	Contribution of EXT1, EXT2, and EXTL3 to Heparan Sulfate Chain Elongation. Journal of Biological Chemistry, 2007, 282, 32802-32810.	3.4	171
20	SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development (Cambridge), 2007, 134, 3327-3338.	2.5	148
21	Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Developmental Biology, 2007, 311, 464-477.	2.0	63
22	Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways. Experimental Cell Research, 2007, 313, 3902-3913.	2.6	68
23	Substrate Specificity and Domain Functions of Extracellular Heparan Sulfate 6-O-Endosulfatases, QSulf1 and QSulf2. Journal of Biological Chemistry, 2006, 281, 4969-4976.	3.4	136
24	Enzymatically Active N-Deacetylase/N-Sulfotransferase-2 Is Present in Liver but Does Not Contribute to Heparan Sulfate N-Sulfation. Journal of Biological Chemistry, 2006, 281, 35727-35734.	3.4	44
25	Overexpression of Heparan Sulfate 6-O-Sulfotransferases in Human Embryonic Kidney 293 Cells Results in Increased N-Acetylglucosaminyl 6-O-Sulfation. Journal of Biological Chemistry, 2006, 281, 5348-5356.	3.4	12
26	Purification of a 75 kDa protein from the organelle matrix of human neutrophils and identification as N-acetylglucosamine-6-sulphatase. Biochemical Journal, 2005, 387, 841-847.	3.7	7
27	Generation of "Neoheparin―fromE.coliK5 Capsular Polysaccharide. Journal of Medicinal Chemistry, 2005, 48, 349-352.	6.4	114
28	Remodeling of Heparan Sulfate Sulfation by Extracellular Endosulfatases. , 2005, , 245-258.		9
29	Biosynthesis of Hyaluronan. Journal of Biological Chemistry, 2005, 280, 8813-8818.	3.4	54
30	Heparan Sulfate Synthesized by Mouse Embryonic Stem Cells Deficient in NDST1 and NDST2 Is 6-O-Sulfated but Contains No N-Sulfate Groups. Journal of Biological Chemistry, 2004, 279, 42355-42358.	3.4	89
31	Embryonic Fibroblasts with a Gene Trap Mutation in Ext1 Produce Short Heparan Sulfate Chains. Journal of Biological Chemistry, 2004, 279, 32134-32141.	3.4	52
32	Sulfotransferases in glycosaminoglycan biosynthesis. Current Opinion in Structural Biology, 2003, 13, 605-611.	5.7	264
33	QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. Journal of Cell Biology, 2003, 162, 341-351.	5.2	443
34	In Vitro Polymerization of Heparan Sulfate Backbone by the EXT Proteins. Journal of Biological Chemistry, 2003, 278, 41333-41337.	3.4	59
35	Oligosaccharide Library-based Assessment of Heparan Sulfate 6-O-Sulfotransferase Substrate Specificity. Journal of Biological Chemistry, 2003, 278, 24371-24376.	3.4	35
36	Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties. Biochemical Journal, 2003, 371, 131-142.	3.7	80

#	Article	IF	CITATIONS
37	Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulphotransferases. Biochemical Journal, 2003, 372, 371-380.	3.7	61
38	Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochemical Journal, 2003, 374, 767-772.	3.7	42
39	Demonstration of a Novel Gene DEXT3 ofDrosophila melanogaster as the EssentialN-Acetylglucosamine Transferase in the Heparan Sulfate Biosynthesis. Journal of Biological Chemistry, 2002, 277, 13659-13665.	3.4	36
40	Biosynthetic Oligosaccharide Libraries for Identification of Protein-binding Heparan Sulfate Motifs. Journal of Biological Chemistry, 2002, 277, 30567-30573.	3.4	90
41	Substrate Specificity of the Heparan Sulfate Hexuronic Acid 2-O-Sulfotransferaseâ€. Biochemistry, 2001, 40, 5548-5555.	2.5	91
42	Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode Â1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7176-7181.	7.1	162
43	rib-2, a Caenorhabditis elegans Homolog of the Human Tumor Suppressor EXT Genes Encodes a Novel α1,4-N-Acetylglucosaminyltransferase Involved in the Biosynthetic Initiation and Elongation of Heparan Sulfate. Journal of Biological Chemistry, 2001, 276, 4834-4838.	3.4	57
44	Expression of heparan sulphate l-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased d-glucuronyl 2-O-sulphation. Biochemical Journal, 2000, 346, 463-468.	3.7	29
45	Expression of heparan sulphate L-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased D-glucuronyl 2-O-sulphation. Biochemical Journal, 2000, 346, 463.	3.7	12
46	The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Reports, 2000, 1, 282-286.	4.5	153
47	cDNA Cloning and Chromosomal Localization of Human α11 Integrin. Journal of Biological Chemistry, 1999, 274, 25735-25742.	3.4	144
48	Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature, 1999, 400, 773-776.	27.8	449
49	Regulated Diversity of Heparan Sulfate. Journal of Biological Chemistry, 1998, 273, 24979-24982.	3.4	597
50	Identification and Expression in Mouse of Two Heparan Sulfate Glucosaminyl N-Deacetylase/N-Sulfotransferase Genes. Journal of Biological Chemistry, 1998, 273, 11902-11907.	3.4	84
51	Mouse Mastocytoma Cells Synthesize Undersulfated Heparin and Chondroitin Sulfate in the Presence of Brefeldin A. Journal of Biological Chemistry, 1997, 272, 3200-3206.	3.4	15
52	Expression of the Mouse Mastocytoma Glucosaminyl N-Deacetylase/N-Sulfotransferase in Human Kidney 293 Cells Results in Increased N-Sulfation of Heparan Sulfate. Biochemistry, 1996, 35, 5250-5256.	2.5	57
53	Presence of N-Unsubstituted Glucosamine Units in Native Heparan Sulfate Revealed by a Monoclonal Antibody. Journal of Biological Chemistry, 1995, 270, 31303-31309.	3.4	135
54	Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. Journal of Biological Chemistry, 1991, 266, 8044-9.	3.4	69

#	Article	IF	CITATIONS
55	Biosynthesis of heparin. O-sulfation of the antithrombin-binding region. Journal of Biological Chemistry, 1988, 263, 15474-84.	3.4	47