Laurent Loinard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093554/publications.pdf

Version: 2024-02-01

		47006	22832
130	12,896	47	112
papers	citations	h-index	g-index
131	131	131	5507
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
5	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
6	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
7	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
8	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
9	A Preliminary VLBA Distance to the Core of Ophiuchus, with an Accuracy of 4%. Astrophysical Journal, 2008, 675, L29-L32.	4.5	228
10	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
11	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
12	A $\hat{a}^{-1}/40.2$ -solar-mass protostar with a Keplerian disk in the very young L1527 IRS system. Nature, 2012, 492, 83-85.	27.8	210
13	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS. Astrophysical Journal, 2017, 834, 142.	4.5	193
14	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
15	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
16	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
17	VLBA Determination of the Distance to Nearby Starâ€forming Regions. I. The Distance to T Tauri with 0.4% Accuracy. Astrophysical Journal, 2007, 671, 546-554.	4.5	147
18	VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. III. HP TAU/G2 AND THE THREE-DIMENSIONAL STRUCTURE OF TAURUS. Astrophysical Journal, 2009, 698, 242-249.	4.5	145

#	Article	IF	Citations
19	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
20	VLBA Determination of the Distance to Nearby Starâ€forming Regions. II. Hubble 4 and HDE 283572 in Taurus. Astrophysical Journal, 2007, 671, 1813-1819.	4.5	138
21	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
22	VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. IV. A PRELIMINARY DISTANCE TO THE PROTO-HERBIG AeBe STAR EC 95 IN THE SERPENS CORE. Astrophysical Journal, 2010, 718, 610-619.	4.5	133
23	IRAS 16293â^'2422: Proper Motions, Jet Precession, the Hot Core, and the Unambiguous Detection of Infall. Astrophysical Journal, 2005, 632, 371-396.	4.5	129
24	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH THE OPHIUCHUS COMPLEX. Astrophysical Journal, 2017, 834, 141.	OF 4.5	127
25	The Gould's Belt Distances Survey (GOBELINS). V. Distances and Kinematics of the Perseus Molecular Cloud. Astrophysical Journal, 2018, 865, 73.	4.5	115
26	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). III. THE DISTANCE TO THE SERPENS/AQUILA MOLECULA COMPLEX. Astrophysical Journal, 2017, 834, 143.	\R _{4.5}	101
27	230 GHz VLBI OBSERVATIONS OF M87: EVENTâ€HORIZONâ€6CALE STRUCTURE DURING AN ENHANCED VERYâ€HIGHâ€ENERGY \$gamma \$â€RAY STATE IN 2012. Astrophysical Journal, 2015, 807, 150.	4.5	98
28	Doubly Deuterated Molecular Species in Protostellar Environments. Astrophysical Journal, 2001, 552, L163-L166.	4.5	91
29	Gaia-DR2 Confirms VLBA Parallaxes in Ophiuchus, Serpens, and Aquila. Astrophysical Journal Letters, 2018, 869, L33.	8.3	89
30	Monitoring the Large Proper Motions of Radio Sources in the Orion BN/KL Region. Astrophysical Journal, 2008, 685, 333-343.	4.5	88
31	A SUB-ARCSECOND SURVEY TOWARD CLASS 0 PROTOSTARS IN PERSEUS: SEARCHING FOR SIGNATURES OF PROTOSTELLAR DISKS. Astrophysical Journal, 2015, 805, 125.	4.5	83
32	Dynamical Decay of a Massive Multiple System in Orion KL?. Astrophysical Journal, 2005, 635, 1166-1172.	4.5	82
33	The Gould's Belt Distances Survey (GOBELINS). IV. Distance, Depth, and Kinematics of the Taurus Star-forming Region. Astrophysical Journal, 2018, 859, 33.	4.5	80
34	MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527. Astrophysical Journal, 2013, 771, 48.	4.5	77
35	VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. V. DYNAMICAL MASS, DISTANCE, AND RADIO STRUCTURE OF V773 Tau A. Astrophysical Journal, 2012, 747, 18.	4.5	74
36	Distances and Kinematics of Gould Belt Star-forming Regions with Gaia DR2 Results. Astrophysical Journal, 2018, 867, 151.	4.5	73

#	Article	IF	CITATIONS
37	Multiepoch VLBA Observations of T Tauri South. Astrophysical Journal, 2005, 619, L179-L182.	4.5	70
38	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
39	PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES. Astrophysical Journal, 2016, 820, 90.	4.5	65
40	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
41	IRAS 16293-2422B: A Compact, Possibly Isolated Protoplanetary Disk in a Class 0 Object. Astrophysical Journal, 2005, 621, L133-L136.	4.5	57
42	THE GOULD's BELT VERY LARGE ARRAY SURVEY. I. THE OPHIUCHUS COMPLEX. Astrophysical Journal, 2013, 775, 63.	4.5	57
43	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
44	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
45	WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS. Astrophysical Journal, Supplement Series, 2016, 227, 25.	7.7	53
46	ALMA 690 GHz OBSERVATIONS OF IRAS 16293–2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK. Astrophysical Journal Letters, 2013, 764, L14.	8.3	51
47	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
48	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
49	VLA AND CARMA OBSERVATIONS OF PROTOSTARS IN THE CEPHEUS CLOUDS: SUB-ARCSECOND PROTO-BINARIES FORMED VIA DISK FRAGMENTATION. Astrophysical Journal, 2013, 779, 93.	4.5	46
50	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
51	CONFIRMATION OF A RECENT BIPOLAR EJECTION IN THE VERY YOUNG HIERARCHICAL MULTIPLE SYSTEM IRAS 16293-2422. Astrophysical Journal, 2010, 712, 1403-1409.	4.5	43
52	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
53	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
54	VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. VI. THE DISTANCE TO THE YOUNG STELLAR OBJECT HW 9 IN CEPHEUS A. Astrophysical Journal, 2011, 733, 71.	4.5	42

#	Article	IF	CITATIONS
55	Hot Corinos Chemical Diversity: Myth or Reality?. Astrophysical Journal Letters, 2020, 896, L3.	8.3	41
56	Very Large Array Observations of Proper Motions in L1551 IRS 5. Astrophysical Journal, 2003, 583, 330-333.	4.5	40
57	Orbital Proper Motions in the Protobinary System L1527/IRAS 04368+2557?. Astrophysical Journal, 2002, 581, L109-L113.	4.5	38
58	THE INNER ENVELOPE AND DISK OF L1527 REVEALED: GEMINI <i>L</i> ′-BAND-SCATTERED LIGHT IMAGING. Astrophysical Journal Letters, 2010, 722, L12-L17.	8.3	37
59	VARIABLE RADIO EMISSION FROM THE YOUNG STELLAR HOST OF A HOT JUPITER. Astrophysical Journal, 2016, 830, 107.	4.5	37
60	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. IV. THE TAURUS-AURIGA COMPLEX. Astrophysical Journal, 2015, 801, 91.	4.5	36
61	RADIO MEASUREMENTS OF THE STELLAR PROPER MOTIONS IN THE CORE OF THE ORION NEBULA CLUSTER. Astrophysical Journal, 2017, 834, 139.	4.5	35
62	Ejection of a Low-Mass Star in a Young Stellar System in Taurus. Astrophysical Journal, 2003, 587, L47-L50.	4.5	35
63	Orbital and Mass Constraints of the Young Binary System IRAS 16293-2422 A. Astrophysical Journal, 2020, 897, 59.	4.5	33
64	ALMA and VLA observations of the outflows in IRAS 16293â^'2422. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 430, L10-L14.	3.3	32
65	MILLIMETER MULTIPLICITY IN DR21(OH): OUTFLOWS, MOLECULAR CORES, AND ENVELOPES. Astrophysical Journal, 2012, 744, 86.	4.5	31
66	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. III. THE ORION REGION. Astrophysical Journal, 2014, 790, 49	. 4.5	31
67	THE INTRINSIC SHAPE OF SAGITTARIUS A* AT 3.5 mm WAVELENGTH. Astrophysical Journal, 2016, 824, 40.	4.5	31
68	THE PROPER MOTIONS OF THE DOUBLE RADIO SOURCE n IN THE ORION BN/KL REGION. Astrophysical Journal, 2017, 834, 140.	4.5	31
69	FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2013, 772, 13.	4.5	30
70	ALMA OBSERVATIONS OF THE OUTFLOW FROM SOURCE I IN THE ORION-KL REGION. Astrophysical Journal Letters, 2012, 754, L17.	8.3	29
71	A ROTATING MOLECULAR JET FROM A PERSEUS PROTOSTAR. Astrophysical Journal, 2012, 751, 78.	4.5	29
72	AN IONIZED OUTFLOW FROM AB AUR, A HERBIG AE STAR WITH A TRANSITIONAL DISK. Astrophysical Journal Letters, 2014, 793, L21.	8.3	29

#	Article	IF	CITATIONS
7 3	New Radio Sources and the Composite Structure of Component B in the Very Young Protostellar System IRAS 16293â°'2422. Astrophysical Journal, 2007, 670, 1353-1360.	4.5	28
74	DISCOVERY OF AN EXPANDING MOLECULAR BUBBLE IN ORION BN/KL. Astrophysical Journal Letters, 2011, 726, L12.	8.3	28
75	A 10,000 YEAR OLD EXPLOSION IN DR21. Astrophysical Journal Letters, 2013, 765, L29.	8.3	28
76	KINEMATICS OF THE OUTFLOW FROM THE YOUNG STAR DG TAU B: ROTATION IN THE VICINITIES OF AN OPTICAL JET. Astrophysical Journal, 2015, 798, 131.	4.5	26
77	INTERNAL AND RELATIVE MOTIONS OF THE TAURUS AND OPHIUCHUS STAR-FORMING REGIONS. Astrophysical Journal, 2015, 807, 119.	4.5	26
78	Tracers of stellar mass loss - I. Optical and near-IR colours and surface brightness fluctuations. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1213-1238.	4.4	25
79	Weak and Compact Radio Emission in Early High-mass Star-forming Regions. II. The Nature of the Radio Sources. Astrophysical Journal, 2019, 880, 99.	4.5	24
80	Cold Massive Molecular Clouds in the Inner Disk of M31. Astrophysical Journal, 1998, 499, 227-233.	4.5	24
81	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. II. THE SERPENS REGION. Astrophysical Journal, 2015, 805, 9.	4.5	23
82	Star Formation Under the Outflow: The Discovery of a Non-thermal Jet from OMC-2 FIR 3 and Its Relationship to the Deeply Embedded FIR 4 Protostar. Astrophysical Journal, 2017, 840, 36.	4.5	23
83	Tidal forces as a regulator of star formation in Taurus. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 395, L81-L84.	3.3	22
84	Asymmetric structure in SgrÂA* at 3Âmm from closure phase measurements with VLBA, GBT and LMT. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1382-1392.	4.4	21
85	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
86	MOLECULES IN η CARINAE. Astrophysical Journal Letters, 2012, 749, L4.	8.3	20
87	MULTI-EPOCH VERY LONG BASELINE ARRAY OBSERVATIONS OF THE COMPACT WIND-COLLISION REGION IN THE QUADRUPLE SYSTEM Cyg OB2 #5. Astrophysical Journal, 2013, 763, 139.	4.5	20
88	VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. VII. MONOCEROS R2. Astrophysical Journal, 2016, 826, 201.	4.5	20
89	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
90	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20

#	Article	IF	CITATIONS
91	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â^33359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	4.5	19
92	Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz. Astrophysical Journal, 2021, 915, 99.	4.5	19
93	EXPANSION PARALLAX OF THE PLANETARY NEBULA IC 418. Astronomical Journal, 2009, 138, 46-49.	4.7	18
94	The orientations of molecular clouds in the outer Galaxy: evidence for the scale of the turbulence driver?. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1201-1206.	4.4	18
95	THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 #5: A WIND-COLLISION REGION. Astrophysical Journal, 2011, 737, 30.	4.5	17
96	On the Nature of the Compact Sources in IRAS 16293–2422 Seen at Centimeter to Submillimeter Wavelengths. Astrophysical Journal, 2019, 875, 94.	4.5	17
97	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. V. THE PERSEUS REGION. Astrophysical Journal, 2016, 818, 116.	4.5	16
98	Improving the triaxial bulge model of M31. Monthly Notices of the Royal Astronomical Society, 2002, 336, 477-482.	4.4	15
99	Anomalous H2CO Absorption toward the Galactic Anticenter: A Blind Search for Dense Molecular Clouds. Astrophysical Journal, 2006, 652, 1230-1239.	4.5	14
100	On the Nature of the Extended Radio Emission Surrounding T Tauri South. Astrophysical Journal, 2007, 657, 916-924.	4.5	14
101	PRE- AND POST-BURST RADIO OBSERVATIONS OF THE CLASS 0 PROTOSTAR HOPS 383 IN ORION. Astrophysical Journal Letters, 2015, 806, L32.	8.3	14
102	Molecular Outflows: Explosive versus Protostellar. Astrophysical Journal, 2017, 836, 133.	4.5	14
103	DEEP VLA IMAGES OF THE HH 124 IRS RADIO CLUSTER AND ITS SURROUNDINGS, AND A NEW DETERMINATION OF THE DISTANCE TO NGC 2264. Astrophysical Journal, 2014, 788, 162.	4. 5	12
104	ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA. Astrophysical Journal Letters, 2015, 811, L4.	8.3	12
105	Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations. Astrophysical Journal, 2022, 932, 72.	4. 5	12
106	The Opacity of Nearby Galaxies from Counts of Background Galaxies. II. Limits of the Synthetic Field Method. Astronomical Journal, 2003, 125, 1182-1203.	4.7	11
107	Modelling the abundance structure of isocyanic acid (HNCO) towards the low-mass solar type protostar IRAS 16293–2422. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2014-2030.	4.4	11
108	A SURPRISING DYNAMICAL MASS FOR V773 Tau B. Astrophysical Journal, 2012, 747, 17.	4.5	10

#	Article	IF	CITATIONS
109	THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?. Astrophysical Journal, 2013, 772, 151.	4.5	10
110	SPATIAL DISTRIBUTION AND KINEMATICS OF THE MOLECULAR MATERIAL ASSOCIATED WITH ETA CARINAE. Astrophysical Journal, 2016, 833, 48.	4.5	10
111	The Relation Between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGCÂ4258. Astrophysical Journal, 2017, 835, 184.	4.5	10
112	Proper Motions of the Radio Source Orion MR, Formerly Known as Orion n, and New Sources with Large Proper Motions in Orion BN/KL. Astrophysical Journal, 2020, 892, 82.	4.5	10
113	The Enigmatic Compact Radio Source Coincident with the Energetic X-Ray Pulsar PSRÂJ1813–1749 and HESSÂJ1813–178. Astrophysical Journal, 2018, 866, 100.	4.5	9
114	Micro-arcsecond structure of Sagittarius A ^{â^—} revealed by high-sensitivity 86 GHz VLBI observations. Astronomy and Astrophysics, 2019, 621, A119.	5.1	9
115	CO, Water, and Tentative Methanol in η Carinae Approaching Periastron. Astrophysical Journal Letters, 2020, 892, L23.	8.3	9
116	A Comparison between Anomalous 6 cm H ₂ CO Absorption and CO(1–0) Emission in the L1204/S140 Region. Astrophysical Journal, 2007, 663, 824-833.	4.5	8
117	VLBA Determination of the Distance to Nearby Star-forming Regions. VIII. The LkHα 101 Cluster. Astrophysical Journal, 2018, 853, 99.	4.5	8
118	The Gould's Belt Distances Survey. Proceedings of the International Astronomical Union, 2012, 8, 36-43.	0.0	7
119	Flat-spectrum Radio Continuum Emission Associated with ϵ Eridani. Astrophysical Journal, 2019, 871, 172.	4.5	7
120	Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.	4.5	7
121	Searching for Compact Radio Sources Associated with UCH ii Regions. Astrophysical Journal, 2017, 836, 96.	4.5	6
122	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
123	Spectroscopy of NGC 4258 Globular Cluster Candidates: Membership Confirmation and Kinematics. Astrophysical Journal, 2019, 876, 39.	4.5	5
124	A distance estimate based on angular expansion for the planetary nebula NGC 6881. Monthly Notices of the Royal Astronomical Society, 2011, 414, 3129-3133.	4.4	4
125	EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE H66α AND He66α RECOMBINATION LINES TOWARD MWC 349A. Astrophysical Journal Letters, 2010, 722, L100-L103.	8.3	3
126	Discovery of 22 GHz Water Masers in the Serpens South Region. Astronomical Journal, 2021, 162, 68.	4.7	3

#	Article	IF	CITATIONS
127	Nonthermal Radio Continuum Emission from Young Nearby Stars. Astrophysical Journal, 2022, 931, 43.	4.5	3
128	The Population of Compact Radio Sources in M17. Astronomical Journal, 2022, 163, 276.	4.7	2
129	VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula. Astronomical Journal, 2018, 155, 218.	4.7	1
130	Surface brightness fluctuations, tracers of stellar mass-loss?. Proceedings of the International Astronomical Union, 2009, 5, 48-51.	0.0	0