
L V Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Millions of digitized historical seaâ€level pressure observations rediscovered. Geoscience Data Journal, 2023, 10, 385-395.	1.8	3
2	Understanding the Changing Nature of Marine Coldâ \in 5pells. Geophysical Research Letters, 2022, 49, .	1.5	17
3	Changes in Observed Daily Precipitation over Global Land Areas since 1950. Journal of Climate, 2021, 34, 3-19.	1.2	35
4	The drivers of extreme rainfall event timing in Australia. International Journal of Climatology, 2021, 41, 6654-6673.	1.5	10
5	Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 2020, 10, 19359.	1.6	155
6	Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032184.	1.2	69
7	Rainfall Estimates on a Gridded NetworkÂ(REGEN) – a global land-based gridded dataset of daily precipitation fromÂ1950 to 2016. Hydrology and Earth System Sciences, 2020, 24, 919-943.	1.9	73
8	Development of an Updated Global Land In Situâ€Based Data Set of Temperature and Precipitation Extremes: HadEX3. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032263.	1.2	182
9	Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environmental Research Letters, 2020, 15, 055002.	2.2	85
10	Insights From CMIP6 for Australia's Future Climate. Earth's Future, 2020, 8, e2019EF001469.	2.4	164
11	Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets. Environmental Research Letters, 2020, 15, 035005.	2.2	44
12	Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics. Earth System Dynamics, 2020, 11, 97-111.	2.7	12
13	On the Robustness of Annual Daily Precipitation Maxima Estimates Over Monsoon Asia. Frontiers in Climate, 2020, 2, .	1.3	6
14	Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions. Environmental Research Letters, 2019, 14, 115002.	2.2	16
15	On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environmental Research Letters, 2019, 14, 125008.	2.2	73
16	GSDR: A Global Sub-Daily Rainfall Dataset. Journal of Climate, 2019, 32, 4715-4729.	1.2	73
17	Recent Changes in Mean and Extreme Temperature and Precipitation in the Western Pacific Islands. Journal of Climate, 2019, 32, 4919-4941.	1.2	33
18	A global assessment of marine heatwaves and their drivers. Nature Communications, 2019, 10, 2624.	5.8	337

#	Article	IF	CITATIONS
19	Precipitation From Persistent Extremes is Increasing in Most Regions and Globally. Geophysical Research Letters, 2019, 46, 6041-6049.	1.5	79
20	Changes in daily temperature extremes relative to the mean in Coupled Model Intercomparison Project Phase 5 models and observations. International Journal of Climatology, 2019, 39, 5273-5291.	1.5	8
21	The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environmental Research Letters, 2019, 14, 044023.	2.2	111
22	The effects of climate extremes on global agricultural yields. Environmental Research Letters, 2019, 14, 054010.	2.2	382
23	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	8.1	883
24	Decadal predictability of temperature and precipitation means and extremes in a perfect-model experiment. Climate Dynamics, 2019, 53, 3711-3729.	1.7	5
25	A Framework to Determine the Limits of Achievable Skill for Interannual to Decadal Climate Predictions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2882-2896.	1.2	4
26	Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 2019, 6, .	1.2	300
27	FROGS: a daily 1°  ×  1° gridded precipitation database of rain gauge, satellite and reanalysis Earth System Science Data, 2019, 11, 1017-1035.	orgducts.	63
28	Longer and more frequent marine heatwaves over the past century. Nature Communications, 2018, 9, 1324.	5.8	1,081
29	Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia. Annals of Global Health, 2018, 81, 333.	0.8	24
30	On the nonlinearity of spatial scales in extreme weather attribution statements. Climate Dynamics, 2018, 50, 2739-2752.	1.7	25
31	Changes in relative fit of human heat stress indices to cardiovascular, respiratory, and renal hospitalizations across five Australian urban populations. International Journal of Biometeorology, 2018, 62, 423-432.	1.3	22
32	A New Daily Observational Record from Grytviken, South Georgia: Exploring Twentieth-Century Extremes in the South Atlantic. Journal of Climate, 2018, 31, 1743-1755.	1.2	12
33	The Sensitivity of Daily Temperature Variability and Extremes to Dataset Choice. Journal of Climate, 2018, 31, 1337-1359.	1.2	23
34	Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes. Weather and Climate Extremes, 2018, 21, 1-9.	1.6	31
35	Intensification of the Daily Wet Day Rainfall Distribution Across Australia. Geophysical Research Letters, 2018, 45, 8568-8576.	1.5	24
36	Comments on "temperatureâ€extreme precipitation scaling: A twoâ€way causality?― International Journal of Climatology, 2018, 38, 4661-4663.	1.5	10

#	Article	IF	CITATIONS
37	Assessing the Robustness of Future Extreme Precipitation Intensification in the CMIP5 Ensemble. Journal of Climate, 2018, 31, 6505-6525.	1.2	45
38	The representation of healthâ€relevant heatwave characteristics in a Regional Climate Model ensemble for New South Wales and the Australian Capital Territory, Australia. International Journal of Climatology, 2017, 37, 1195-1210.	1.5	11
39	Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change, 2017, 7, 128-132.	8.1	242
40	Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather and Climate Extremes, 2017, 15, 34-56.	1.6	148
41	Large uncertainties in observed daily precipitation extremes over land. Journal of Geophysical Research D: Atmospheres, 2017, 122, 668-681.	1.2	99
42	No significant difference between Australian heat wave impacts of Modoki and eastern Pacific El Niño. Geophysical Research Letters, 2017, 44, 5150-5157.	1.5	5
43	On the use of selfâ€organizing maps for studying climate extremes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3891-3903.	1.2	92
44	Comparing Australian heat waves in the CMIP5 models through cluster analysis. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3266-3281.	1.2	29
45	Understanding the spatioâ€ŧemporal influence of climate variability on Australian heatwaves. International Journal of Climatology, 2017, 37, 3963-3975.	1.5	27
46	The influence of topography on midlatitude cyclones on Australia's east coast. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9173-9184.	1.2	5
47	Comparative evaluation of human heat stress indices on selected hospital admissions in Sydney, Australia. Australian and New Zealand Journal of Public Health, 2017, 41, 381-387.	0.8	13
48	Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 2017, 18, 65-74.	1.6	178
49	Australian east coast midâ€latitude cyclones in the 20th Century Reanalysis ensemble. International Journal of Climatology, 2017, 37, 2187-2192.	1.5	19
50	Greater increases in temperature extremes in low versus high income countries. Environmental Research Letters, 2017, 12, 034007.	2.2	41
51	How much does it rain over land?. Geophysical Research Letters, 2016, 43, 341-348.	1.5	116
52	Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5138-5158.	1.2	75
53	Natural hazards in Australia: heatwaves. Climatic Change, 2016, 139, 101-114.	1.7	80
54	Projected changes in east Australian midlatitude cyclones during the 21st century. Geophysical Research Letters, 2016, 43, 334-340.	1.5	34

#	Article	IF	CITATIONS
55	Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method in south eastern Australia. Climatic Change, 2016, 138, 85-98.	1.7	55
56	A Multiregion Model Evaluation and Attribution Study of Historical Changes in the Area Affected by Temperature and Precipitation Extremes. Journal of Climate, 2016, 29, 8285-8299.	1.2	19
57	Comparing regional precipitation and temperature extremes in climate model and reanalysis products. Weather and Climate Extremes, 2016, 13, 35-43.	1.6	56
58	The influence of local sea surface temperatures on Australian east coast cyclones. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,352.	1.2	14
59	Temperature and precipitation extremes in centuryâ€long gridded observations, reanalyses, and atmospheric model simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,174.	1.2	110
60	The influence of soil moisture deficits on Australian heatwaves. Environmental Research Letters, 2016, 11, 064003.	2.2	66
61	A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 2016, 141, 227-238.	1.5	1,081
62	Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dynamics, 2016, 47, 2235-2251.	1.7	31
63	More extreme precipitation in the world's dry and wet regions. Nature Climate Change, 2016, 6, 508-513.	8.1	1,043
64	Attribution of extreme temperature changes during 1951–2010. Climate Dynamics, 2016, 46, 1769-1782.	1.7	74
65	Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 2016, 11, 4-16.	1.6	292
66	Zonal winds and southeast Australian rainfall in global and regional climate models. Climate Dynamics, 2016, 46, 123-133.	1.7	10
67	Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions. Climate Dynamics, 2016, 46, 413-426.	1.7	40
68	Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble. Australian Meteorological Magazine, 2016, 66, 108-124.	0.4	15
69	Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble. Journal of Southern Hemisphere Earth Systems Science, 2016, 66, 108-124.	0.7	4
70	Multiâ€dataset comparison of gridded observed temperature and precipitation extremes over China. International Journal of Climatology, 2015, 35, 2809-2827.	1.5	85
71	Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: A case study for south-east Australia. Weather and Climate Extremes, 2015, 9, 6-16.	1.6	48
72	The timing of anthropogenic emergence in simulated climate extremes. Environmental Research Letters, 2015, 10, 094015.	2.2	126

#	Article	IF	CITATIONS
73	Differential Effects of Temperature Extremes on Hospital Admission Rates for Respiratory Disease between Indigenous and Non-Indigenous Australians in the Northern Territory. International Journal of Environmental Research and Public Health, 2015, 12, 15352-15365.	1.2	20
74	How Well Do Gridded Datasets of Observed Daily Precipitation Compare over Australia?. Advances in Meteorology, 2015, 2015, 1-15.	0.6	52
75	Resolution Sensitivity of Cyclone Climatology over Eastern Australia Using Six Reanalysis Products*. Journal of Climate, 2015, 28, 9530-9549.	1.2	30
76	A Multiregion Assessment of Observed Changes in the Areal Extent of Temperature and Precipitation Extremes. Journal of Climate, 2015, 28, 9206-9220.	1.2	29
77	Impact of Identification Method on the Inferred Characteristics and Variability of Australian East Coast Lows. Monthly Weather Review, 2015, 143, 864-877.	0.5	33
78	The ENSO-Australian rainfall teleconnection in reanalysis and CMIP5. Climate Dynamics, 2015, 44, 2623-2635.	1.7	32
79	Effect of Ambient Temperature on Australian Northern Territory Public Hospital Admissions for Cardiovascular Disease among Indigenous and Non-Indigenous Populations. International Journal of Environmental Research and Public Health, 2014, 11, 1942-1959.	1.2	35
80	Investigating uncertainties in global gridded datasets of climate extremes. Climate of the Past, 2014, 10, 2171-2199.	1.3	35
81	Extreme Rainfall Variability in Australia: Patterns, Drivers, and Predictability*. Journal of Climate, 2014, 27, 6035-6050.	1.2	92
82	Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 2014, 52, 522-555.	9.0	911
83	Trends and variability of temperature extremes in the tropical Western Pacific. International Journal of Climatology, 2014, 34, 2585-2603.	1.5	27
84	An updated assessment of trends and variability in total and extreme rainfall in the western Pacific. International Journal of Climatology, 2014, 34, 2775-2791.	1.5	41
85	No pause in the increase of hot temperature extremes. Nature Climate Change, 2014, 4, 161-163.	8.1	365
86	Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ and Reanalysis Datasets. Journal of Climate, 2014, 27, 5019-5035.	1.2	156
87	An investigation of some unexpected frost day increases in southern Australia. Australian Meteorological Magazine, 2014, 64, 261-271.	0.4	11
88	A framework for benchmarking of homogenisation algorithm performance on the global scale. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3, 187-200.	0.6	32
89	Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2098-2118.	1.2	1,029
90	On the Measurement of Heat Waves. Journal of Climate, 2013, 26, 4500-4517.	1.2	751

#	Article	IF	CITATIONS
91	Global Land-Based Datasets for Monitoring Climatic Extremes. Bulletin of the American Meteorological Society, 2013, 94, 997-1006.	1.7	316
92	Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 2013, 100, 295-307.	1.6	238
93	Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate, 2013, 26, 3904-3918.	1.2	888
94	Explaining Extreme Events of 2012 from a Climate Perspective. Bulletin of the American Meteorological Society, 2013, 94, S1-S74.	1.7	229
95	The efficacy of using gridded data to examine extreme rainfall characteristics: a case study for Australia. International Journal of Climatology, 2013, 33, 2376-2387.	1.5	133
96	Debate heating up over changes in climate variability. Environmental Research Letters, 2013, 8, 041001.	2.2	48
97	Asymmetry in the response of eastern Australia extreme rainfall to lowâ€frequency Pacific variability. Geophysical Research Letters, 2013, 40, 2271-2277.	1.5	88
98	Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. , 2013, , 339-389.		76
99	Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth System Dynamics, 2012, 3, 213-231.	2.7	94
100	The shifting probability distribution of global daytime and nightâ€ŧime temperatures. Geophysical Research Letters, 2012, 39, .	1.5	253
101	Climate model simulated changes in temperature extremes due to land cover change. Journal of Geophysical Research, 2012, 117, .	3.3	88
102	The impact of the El Niño outhern Oscillation on maximum temperature extremes. Geophysical Research Letters, 2012, 39, .	1.5	83
103	Changes in Climate Extremes and their Impacts on the Natural Physical Environment. , 2012, , 109-230.		1,080
104	Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 2012, 39, .	1.5	701
105	Climate and Weather Extremes. , 2012, , 253-288.		8
106	Reanalysis suggests long-term upward trends in European storminess since 1871. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	92
107	Extreme heat rooted in dry soils. Nature Geoscience, 2011, 4, 12-13.	5.4	110
108	Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 851-870.	3.6	1,325

#	Article	IF	CITATIONS
109	Changes in temperature and precipitation extremes over the Indoâ€Pacific region from 1971 to 2005. International Journal of Climatology, 2011, 31, 791-801.	1.5	162
110	Significant decline in storminess over southeast Australia since the late 19th century. Australian Meteorological Magazine, 2011, 61, 23-30.	0.4	14
111	Synoptic influences on seasonal, interannual and decadal temperature variations in Melbourne, Australia. International Journal of Climatology, 2010, 30, 1372-1381.	1.5	9
112	Forest plantations, water availability, and regional climate change: controversies surrounding Acacia mearnsii plantations in the upper Palnis Hills, southern India. Regional Environmental Change, 2010, 10, 103-117.	1.4	23
113	An assessment of climate change impacts and adaptation for the Torres Strait Islands, Australia. Climatic Change, 2010, 102, 405-433.	1.7	102
114	A New Daily Pressure Dataset for Australia and Its Application to the Assessment of Changes in Synoptic Patterns during the Last Century. Journal of Climate, 2010, 23, 1111-1126.	1.2	49
115	Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. International Journal of Climatology, 2009, 29, 417-435.	1.5	323
116	Fluctuations in autumn–winter severe storms over the British Isles: 1920 to present. International Journal of Climatology, 2009, 29, 357-371.	1.5	65
117	Climate extremes: progress and future directions. International Journal of Climatology, 2009, 29, 317-319.	1.5	50
118	Temperature and precipitation extremes in the second half of the twentieth century from numerical modeling results and observational data. Izvestiya - Atmospheric and Oceanic Physics, 2009, 45, 284-293.	0.2	12
119	Influence of sea surface temperature variability on global temperature and precipitation extremes. Journal of Geophysical Research, 2009, 114, .	3.3	83
120	Severe storms inferred from 150 years of sub-daily pressure observations along Victoria's "Shipwreck Coast". Australian Meteorological Magazine, 2009, 58, 129-133.	0.4	12
121	European Climate Extremes and the North Atlantic Oscillation. Journal of Climate, 2008, 21, 72-83.	1.2	243
122	Enhancing Middle East Climate Change Monitoring and Indexes. Bulletin of the American Meteorological Society, 2007, 88, 1249-1254.	1.7	15
123	Has the climate become more variable or extreme? Progress 1992-2006. Progress in Physical Geography, 2007, 31, 77-87.	1.4	66
124	Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. Geophysical Research Letters, 2007, 34, .	1.5	47
125	Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 2006, 111, .	3.3	297
126	Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 2006, 111, .	3.3	2,884

#	Article	IF	CITATIONS
127	Variations in severe storms over China. Geophysical Research Letters, 2006, 33, .	1.5	10
128	Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. Journal of Geophysical Research, 2006, 111, .	3.3	347
129	Recent observed changes in severe storms over the United Kingdom and Iceland. Geophysical Research Letters, 2005, 32, .	1.5	90
130	Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research, 2005, 110, .	3.3	405
131	Global and regional climate in 2003. Weather, 2004, 59, 145-152.	0.6	20
132	Data Rescue in the Southeast Asia and South Pacific Region: Challenges and Opportunities. Bulletin of the American Meteorological Society, 2004, 85, 1483-1490.	1.7	38
133	Global and regional climate in 2002. Weather, 2003, 58, 324-336.	0.6	1
134	Comparison of Modeled and Observed Trends in Indices of Daily Climate Extremes. Journal of Climate, 2003, 16, 3560-3571.	1.2	302
135	Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 2003, 108, .	3.3	8,242
136	Recent changes in climate extremes in the Caribbean region. Journal of Geophysical Research, 2002, 107, ACL 16-1-ACL 16-9.	3.3	230
137	Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 2002, 22, 1441-1453.	1.5	1,318
138	Global and regional climate in 2001. Weather, 2002, 57, 328-340.	0.6	7
139	Climate Assessment for 2001. Bulletin of the American Meteorological Society, 2002, 83, 938-938.	1.7	31
140	Adjusting for sampling density in grid box land and ocean surface temperature time series. Journal of Geophysical Research, 2001, 106, 3371-3380.	3.3	256
141	Climate Assessment for 2000. Bulletin of the American Meteorological Society, 2001, 82, 1304-1304.	1.7	17
142	Global and regional climate in 2000. Weather, 2001, 56, 255-267.	0.6	5
143	Updated Precipitation Series for the U.K. and Discussion of Recent Extremes. Atmospheric Science Letters, 2000, 1, 142-150.	0.8	169
144	The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes. Advances in Science and Research, 0, 15, 117-126.	1.0	59

#	Article	IF	CITATIONS
145	More intense daily precipitation in <scp>CORDEXâ€SEA</scp> regional climate models than their forcing global climate models over Southeast Asia. International Journal of Climatology, 0, , .	1.5	4