James Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093377/publications.pdf Version: 2024-02-01

INMES HADDIS

#	Article	IF	CITATIONS
1	Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages. PLoS Pathogens, 2022, 18, e1010166.	4.7	7
2	Investigating immunoregulatory effects of myeloid cell autophagy in acute and chronic inflammation. Immunology and Cell Biology, 2022, 100, 605-623.	2.3	1
3	GILZ regulates type I interferon release and sequesters STAT1. Journal of Autoimmunity, 2022, 131, 102858.	6.5	5
4	A sprinkle of salt in the pressure cooker of innate immunity and inflammation. Immunology and Cell Biology, 2021, 99, 9-12.	2.3	0
5	Trailblazing women immunologists of Australia and New Zealand. Immunology and Cell Biology, 2021, 99, 338-343.	2.3	0
6	GILZ Regulates the Expression of Pro-Inflammatory Cytokines and Protects Against End-Organ Damage in a Model of Lupus. Frontiers in Immunology, 2021, 12, 652800.	4.8	7
7	Necrotic cell death increases the release of macrophage migration inhibitory factor by monocytes/macrophages. Immunology and Cell Biology, 2020, 98, 782-790.	2.3	13
8	Ubiquitination of MHC Class II Is Required for Development of Regulatory but Not Conventional CD4+ T Cells. Journal of Immunology, 2020, 205, 1207-1216.	0.8	10
9	Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacological Research, 2020, 158, 104842.	7.1	22
10	Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus. Lupus Science and Medicine, 2020, 7, e000375.	2.7	15
11	Inducing and Inhibiting Autophagy to Investigate Its Interactions with MIF. Methods in Molecular Biology, 2020, 2080, 147-158.	0.9	1
12	Assays for Measuring the Role of MIF in NLRP3 Inflammasome Activation. Methods in Molecular Biology, 2020, 2080, 159-172.	0.9	1
13	Flow Cytometry Phenotyping of Bone Marrow-Derived Macrophages from Wild-Type and Mifâ^'/â^' Mice. Methods in Molecular Biology, 2020, 2080, 57-66.	0.9	2
14	Staining MIF in Cells for Confocal Microscopy. Methods in Molecular Biology, 2020, 2080, 85-91.	0.9	1
15	Co-Immunoprecipitation of Macrophage Migration Inhibitory Factor. Methods in Molecular Biology, 2020, 2080, 115-122.	0.9	0
16	Effect of storage duration on cytokine stability in human serum and plasma. Cytokine, 2019, 113, 453-457.	3.2	23
17	Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus. Scientific Reports, 2019, 9, 15433.	3.3	16
18	Analysis of serum interleukin(<scp>IL</scp>)â€lα, <scp>IL</scp> â€lβ and <scp>IL</scp> â€l8 in patients with systemic sclerosis. Clinical and Translational Immunology, 2019, 8, e1045.	3.8	16

#	Article	IF	CITATIONS
19	Analysis of serum B cellâ€activating factor from the tumor necrosis factor family (<scp>BAFF</scp>) and its soluble receptors in systemic lupus erythematosus. Clinical and Translational Immunology, 2019, 8, e01047.	3.8	25
20	Rediscovering MIF: New Tricks for an Old Cytokine. Trends in Immunology, 2019, 40, 447-462.	6.8	59
21	Mitophagy and the release of inflammatory cytokines. Mitochondrion, 2018, 41, 2-8.	3.4	69
22	Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Frontiers in Immunology, 2018, 9, 2914.	4.8	42
23	Analysis of urinary macrophage migration inhibitory factor in systemic lupus erythematosus. Lupus Science and Medicine, 2018, 5, e000277.	2.7	10
24	Analysis of serum macrophage migration inhibitory factor and Dâ€dopachrome tautomerase in systemic sclerosis. Clinical and Translational Immunology, 2018, 7, e1042.	3.8	14
25	Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus, 2018, 27, 2029-2040.	1.6	16
26	Analysis of Serum Interleukin (IL)-1β and IL-18 in Systemic Lupus Erythematosus. Frontiers in Immunology, 2018, 9, 1250.	4.8	89
27	All-transRetinoic Acid Augments Autophagy during Intracellular Bacterial Infection. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 548-556.	2.9	40
28	Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nature Communications, 2018, 9, 2223.	12.8	142
29	MIF antagonism restores corticosteroid sensitivity in a murine model of severe asthma. , 2018, , .		0
30	Autophagy and inflammasomes. Molecular Immunology, 2017, 86, 10-15.	2.2	167
31	Autophagy Regulates Inflammatory Responses in Antigen-Presenting Cells. , 2017, , 325-341.		Ο
32	Potential impact of oxidative stress induced growth inhibitor 1 (OSGIN1) on airway epithelial cell autophagy in chronic obstructive pulmonary disease (COPD). Journal of Thoracic Disease, 2017, 9, 4825-4827.	1.4	24
33	Editorial: Focus on Systemic Lupus Erythematosus. Frontiers in Immunology, 2016, 7, 400.	4.8	Ο
34	Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy, 2016, 12, 907-916.	9.1	83
35	Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Scientific Reports, 2016, 6, 34604.	3.3	81
36	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	CITATIONS
37	Glucocorticoid-induced leucine zipper (GILZ) inhibits B cell activation in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2016, 75, 739-747.	0.9	36
38	A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling. Immunity, 2016, 44, 368-379.	14.3	30
39	"Intellectual developmental disordersâ€ı reflections on the international consensus document for redefining "mental retardation-intellectual disability―in ICD-11. Advances in Mental Health and Intellectual Disabilities, 2016, 10, 36-58.	1.1	43
40	Brief Report: Interleukinâ€38 Exerts Antiinflammatory Functions and Is Associated With Disease Activity in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2015, 67, 3219-3225.	5.6	102
41	Autophagy Controls the Production and Secretion of IL- $1\hat{l}^2$. , 2015, , 201-209.		о
42	MIF: Implications in the Pathoetiology of Systemic Lupus Erythematosus. Frontiers in Immunology, 2015, 6, 577.	4.8	65
43	Autophagy and immunity. Immunology and Cell Biology, 2015, 93, 1-2.	2.3	12
44	GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation. Journal of Autoimmunity, 2015, 61, 73-80.	6.5	47
45	Macrophage Migration Inhibitory Factor Inhibits the Antiinflammatory Effects of Glucocorticoids via Glucocorticoidâ€Induced Leucine Zipper. Arthritis and Rheumatology, 2014, 66, 2059-2070.	5.6	43
46	A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. British Journal of Pharmacology, 2014, 171, 4087-4096.	5.4	58
47	GILZ: a new link between the hypothalamic pituitary adrenal axis and rheumatoid arthritis?. Immunology and Cell Biology, 2014, 92, 747-751.	2.3	6
48	The role of inflammasome-derived IL-1 in driving IL-17 responses. Journal of Leukocyte Biology, 2013, 93, 489-497.	3.3	134
49	Autophagy and inflammatory diseases. Immunology and Cell Biology, 2013, 91, 250-258.	2.3	111
50	Receptor-mediated recognition of mycobacterial pathogens. Cellular Microbiology, 2013, 15, 1484-1495.	2.1	104
51	Autophagy and IL-1 Family Cytokines. Frontiers in Immunology, 2013, 4, 83.	4.8	81
52	Autophagy Regulates IL-23 Secretion and Innate T Cell Responses through Effects on IL-1 Secretion. Journal of Immunology, 2012, 189, 4144-4153.	0.8	152
53	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
54	Advanced Microscopy: Laser Scanning Confocal Microscopy. Methods in Molecular Biology, 2011, 784, 169-180.	0.9	6

#	Article	IF	CITATIONS
55	Autophagy and cytokines. Cytokine, 2011, 56, 140-144.	3.2	334
56	Autophagy in the immune response to tuberculosis: clinical perspectives. Clinical and Experimental Immunology, 2011, 164, 291-300.	2.6	76
57	Autophagy Controls IL-1β Secretion by Targeting Pro-IL-1β for Degradation. Journal of Biological Chemistry, 2011, 286, 9587-9597.	3.4	723
58	The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. European Journal of Immunology, 2010, 40, 634-638.	2.9	41
59	How tumour necrosis factor blockers interfere with tuberculosis immunity. Clinical and Experimental Immunology, 2010, 161, 1-9.	2.6	280
60	Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature Immunology, 2010, 11, 897-904.	14.5	1,149
61	Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 870-875.	7.1	486
62	Autophagy and the Immune Response to TB. Transboundary and Emerging Diseases, 2009, 56, 248-254.	3.0	35
63	Th1–Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Veterinary Immunology and Immunopathology, 2009, 128, 37-43.	1.2	59
64	Measuring Autophagy in Macrophages. Current Protocols in Immunology, 2009, 87, Unit 14.14.	3.6	9
65	Development of a simple, sensitive, rapid test which discriminates BCG-vaccinated from Mycobacterium bovis-infected cattle. Vaccine, 2008, 26, 5470-5476.	3.8	12
66	Tumor Necrosis Factor Blockers Influence Macrophage Responses to <i>Mycobacterium tuberculosis</i> . Journal of Infectious Diseases, 2008, 198, 1842-1850.	4.0	117
67	Mannose Receptor Expression and Function Define a New Population of Murine Dendritic Cells. Journal of Immunology, 2007, 178, 4975-4983.	0.8	100
68	Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood, 2007, 109, 3776-3785.	1.4	227
69	The evolutionary neurobiology, emergence and facilitation of empathy. , 2007, , 168-186.		11
70	T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium tuberculosis. Immunity, 2007, 27, 505-517.	14.3	413
71	T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium tuberculosis. Immunity, 2007, 27, 685.	14.3	2
72	Phosphoinositides in phagolysosome and autophagosome biogenesis. Biochemical Society Symposia, 2007, 74, 141.	2.7	12

#	Article	IF	CITATIONS
73	Autophagy and Mycobacterium tuberculosis. , 2006, , 127-138.		Ο
74	A vitellogenic-like carboxypeptidase expressed by human macrophages is localized in endoplasmic reticulum and membrane ruffles. International Journal of Experimental Pathology, 2006, 87, 29-39.	1.3	36
75	Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cellular Microbiology, 2006, 8, 719-727.	2.1	273
76	Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO Journal, 2006, 25, 5250-5259.	7.8	152
77	Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. European Journal of Immunology, 2006, 36, 1074-1082.	2.9	130
78	Autophagy in Immune Defense Against Mycobacterium tuberculosis. Autophagy, 2006, 2, 175-178.	9.1	67
79	Glycosylation Influences the Ligand Binding Activities of Mannose Receptor. Advances in Experimental Medicine and Biology, 2005, 564, 25-26.	1.6	4
80	Glycosylation Influences the Lectin Activities of the Macrophage Mannose Receptor. Journal of Biological Chemistry, 2005, 280, 32811-32820.	3.4	69
81	Autocatalytic Cleavage of the EMR2 Receptor Occurs at a Conserved G Protein-coupled Receptor Proteolytic Site Motif. Journal of Biological Chemistry, 2004, 279, 31823-31832.	3.4	179
82	Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro. Immunology, 2003, 108, 55-61.	4.4	45
83	Binding and entry of respiratory syncytial virus into host cells and initiation of the innate immune response. Cellular Microbiology, 2003, 5, 671-680.	2.1	56
84	Caveolae and caveolin in immune cells: distribution and functions. Trends in Immunology, 2002, 23, 158-164.	6.8	144
85	Expression of caveolin by bovine lymphocytes and antigen-presenting cells. Immunology, 2002, 105, 190-195.	4.4	52
86	Supernatants from leucocytes treated with melanin-concentrating hormone (MCH) and α-melanocyte stimulating hormone (α-MSH) have a stimulatory effect on rainbow trout (Oncorhynchus mykiss) phagocytes in vitro. Veterinary Immunology and Immunopathology, 2000, 76, 117-124.	1.2	23
87	Modulation of the fish immune system by hormones. Veterinary Immunology and Immunopathology, 2000, 77, 163-176.	1.2	278
88	Melanin-concentrating hormone (MCH) stimulates the activity of rainbow trout (Oncorhynchus) Tj ETQq0 0 0 rg	BT /Qverlc	ck 10 Tf 50 1

	Alpha-melanocyte stimulating hormone (I±-MSH) and melanin-concentrating hormone (MCH) stimulate		
89	phagocytosis by head kidney leucocytes of rainbow trout (Oncorhynchus mykiss) in vitro. Fish and Shellfish Immunology, 1998, 8, 631-638.	3.6	19