Ning Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093120/publications.pdf

Version: 2024-02-01

36303 39675 9,940 136 51 94 citations h-index g-index papers 143 143 143 6147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improving rural women's health in China: cooking with clean energy. Environmental Science and Pollution Research, 2022, 29, 20906-20920.	5.3	7
2	How can government environmental policy affect the performance of SMEs: Chinese evidence. Journal of Cleaner Production, 2022, 336, 130308.	9.3	15
3	Innovation and energy productivity: An empirical study of the innovative city pilot policy in China✰. Technological Forecasting and Social Change, 2022, 176, 121430.	11.6	36
4	Does industrial transfer policy mitigate carbon emissions? Evidence from a quasi-natural experiment in China. Journal of Environmental Management, 2022, 307, 114526.	7.8	36
5	Spatial analysis connects excess water pollution discharge, industrial production, and consumption at the sectoral level. Npj Clean Water, 2022, 5, .	8.0	13
6	The co-benefits of clean air and low-carbon policies on heavy metal emission reductions from coal-fired power plants in china. Resources, Conservation and Recycling, 2022, 181, 106258.	10.8	28
7	Allocating environmental costs of China's rare earth production to global consumption. Science of the Total Environment, 2022, 831, 154934.	8.0	10
8	Life cycle assessment shows that retrofitting coal-fired power plants with fuel cells will substantially reduce greenhouse gas emissions. One Earth, 2022, 5, 392-402.	6.8	17
9	The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China. Energy Economics, 2022, 112, 106147.	12.1	26
10	Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets. Energy Economics, 2022, 112, 106143.	12.1	26
11	Sustainable supply chain management under big data: a bibliometric analysis. Journal of Enterprise Information Management, 2021, 34, 427-445.	7.5	59
12	Potential gains of trading CO2 emissions in the Chinese transportation sector. Transportation Research, Part D: Transport and Environment, 2021, 90, 102639.	6.8	10
13	Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Economics, 2021, 96, 105125.	12.1	280
14	The driving forces behind the change in energy consumption in developing countries. Environmental Research Letters, 2021, 16, 054002.	5.2	18
15	The influences of incentive policy perceptions and consumer social attributes on battery electric vehicle purchase intentions. Energy Policy, 2021, 151, 112163.	8.8	64
16	Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure. Nature Sustainability, 2021, 4, 739-747.	23.7	84
17	Does public subsidy promote sustainable innovation? The case of Chinese high-tech SMEs. Environmental Science and Pollution Research, 2021, 28, 53493-53506.	5.3	17
18	Mn oxides changed nitrogen removal process in constructed wetlands with a microbial electrolysis cell. Science of the Total Environment, 2021, 770, 144761.	8.0	17

#	Article	IF	Citations
19	Price sensitivity and consumers' support for renewable energy in China. Energy, 2021, 222, 119862.	8.8	11
20	Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planetary Health, The, 2021, 5, e356-e367.	11.4	63
21	The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach. Energy Economics, 2021, 100, 105318.	12.1	17
22	The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach. Technological Forecasting and Social Change, 2021, 169, 120809.	11.6	22
23	Temporal trends of the concentration and sources of secondary organic aerosols in PM2.5 in Shanghai during 2012 and 2018. Atmospheric Environment, 2021, 261, 118596.	4.1	22
24	Does it matter who gives information? The impact of information sources on farmers' pesticide use in China. Journal of Asian Economics, 2021, 76, 101345.	2.7	11
25	Heterogeneity of consumption-based carbon emissions and driving forces in Indian states. Advances in Applied Energy, 2021, 4, 100039.	13.2	24
26	CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement. Resources, Conservation and Recycling, 2021, 174, 105760.	10.8	40
27	Impact on China's CO ₂ emissions from COVID-19 pandemic. Chinese Science Bulletin, 2021, 66, 1912-1922.	0.7	9
28	Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China?. Annals of Operations Research, 2020, 290, 145-168.	4.1	12
29	Do green behaviors improve corporate value? An empirical study in China. Journal of Cleaner Production, 2020, 246, 119014.	9.3	6
30	The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach. Energy Economics, 2020, 85, 104576.	12.1	47
31	Does the SO2 emissions trading scheme encourage green total factor productivity? An empirical assessment on China's cities. Environmental Science and Pollution Research, 2020, 27, 6375-6388.	5.3	68
32	Is it feasible for China to enhance its air quality in terms of the efficiency and the regulatory cost of air pollution?. Science of the Total Environment, 2020, 709, 136149.	8.0	26
33	The drivers of China's regional green productivity, 1999–2013. Resources, Conservation and Recycling, 2020, 153, 104561.	10.8	41
34	The inequality of city-level energy efficiency for China. Journal of Environmental Management, 2020, 255, 109843.	7.8	57
35	Air pollution and tourism development: An interplay. Annals of Tourism Research, 2020, 85, 103032.	6.4	67
36	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420

#	Article	IF	CITATIONS
37	Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis. Technological Forecasting and Social Change, 2020, 160, 120245.	11.6	11
38	China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits. One Earth, 2020, 3, 777-787.	6.8	37
39	Critical Rare-Earth Elements Mismatch Global Wind-Power Ambitions. One Earth, 2020, 3, 116-125.	6.8	72
40	Carbon emissions and environmental management based on Big Data and Streaming Data: A bibliometric analysis. Science of the Total Environment, 2020, 733, 138984.	8.0	60
41	Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods. Risk Analysis, 2020, 40, 1612-1631.	2.7	18
42	The effect of China's pilot carbon emissions trading schemes on poverty alleviation: A quasi-natural experiment approach. Journal of Environmental Management, 2020, 271, 110973.	7.8	62
43	Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China. Energy Policy, 2020, 139, 111354.	8.8	69
44	The effect of environmental regulation on air pollution, productivity, and factor structure: a quasi-natural experiment evidence from China. Environmental Science and Pollution Research, 2020, 27, 20392-20409.	5. 3	17
45	Comparisons of CO2 emission performance between secondary and service industries in Yangtze River Delta cities. Journal of Environmental Management, 2019, 252, 109667.	7.8	52
46	Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry. Technological Forecasting and Social Change, 2019, 141, 1-11.	11.6	99
47	Does smart city policy improve energy efficiency? Evidence from a quasi-natural experiment in China. Journal of Cleaner Production, 2019, 229, 501-512.	9.3	89
48	CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta. Applied Energy, 2019, 251, 113384.	10.1	69
49	Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective. Ecological Modelling, 2019, 402, 1-17.	2.5	43
50	The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach. Technological Forecasting and Social Change, 2019, 144, 129-136.	11.6	35
51	Does industry upgrade transfer pollution: Evidence from a natural experiment of Guangdong province in China. Journal of Cleaner Production, 2019, 229, 902-910.	9.3	39
52	Determinants of Residents' Willingness to Accept and Their Levels for Ecological Conservation in Ganjiang River Basin, China: An Empirical Analysis of Survey Data for 677 Households. Sustainability, 2019, 11, 6138.	3.2	9
53	Does China's Pollution Levy Standards Reform Promote Green Growth?. Sustainability, 2019, 11, 6186.	3.2	10
54	Birnessite-coated sand filled vertical flow constructed wetlands improved nutrients removal in a cold climate. RSC Advances, 2019, 9, 35931-35938.	3.6	20

#	Article	IF	CITATIONS
55	Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal. Ecotoxicology and Environmental Safety, 2019, 170, 446-452.	6.0	66
56	Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts. Energy Policy, 2019, 125, 267-276.	8.8	8
57	Energy efficiency and technology gap of enterprises in Guangdong province: A meta-frontier directional distance function analysis. Journal of Cleaner Production, 2019, 212, 1446-1453.	9.3	15
58	Does major agriculture production zone have higher carbon efficiency and abatement cost under climate change mitigation?. Ecological Indicators, 2019, 105, 376-385.	6.3	20
59	Family firms, sustainable innovation and financing cost: Evidence from Chinese hi-tech small and medium-sized enterprises. Technological Forecasting and Social Change, 2019, 144, 499-511.	11.6	47
60	Does energy research funding work? Evidence from the Natural Science Foundation of China using TEI@I method. Technological Forecasting and Social Change, 2019, 144, 369-380.	11.6	8
61	Toward better environmental performance in hog production in China: Is intensification the answer?. Ecological Indicators, 2019, 105, 347-354.	6.3	17
62	Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications. Energy Policy, 2018, 116, 344-356.	8.8	24
63	The Role of Agricultural Training on Fertilizer Use Knowledge: A Randomized Controlled Experiment. Ecological Economics, 2018, 148, 77-91.	5.7	38
64	Sustainable water use and water shadow price in China's urban industry. Resources, Conservation and Recycling, 2018, 128, 489-498.	10.8	46
65	Composite eco-efficiency indicators for China based on data envelopment analysis. Ecological Indicators, 2018, 85, 674-697.	6.3	96
66	Sustainable endogenous growth model of multiple regions: Reconciling OR and economic perspectives. European Journal of Operational Research, 2018, 269, 218-226.	5.7	7
67	The Potential Gains from Carbon Emissions Trading in China's Industrial Sectors. Computational Economics, 2018, 52, 1175-1194.	2.6	18
68	Industrial eco-efficiency, regional disparity, and spatial convergence of China's regions. Journal of Cleaner Production, 2018, 204, 872-887.	9.3	94
69	National research funding and energy efficiency: Evidence from the National Science Foundation of China. Energy Policy, 2018, 120, 335-346.	8.8	41
70	Structural decline in China's CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 2018, 11, 551-555.	12.9	340
71	Analysis of the Factors Influencing Willingness to Pay and Payout Level for Ecological Environment Improvement of the Ganjiang River Basin. Sustainability, 2018, 10, 2149.	3.2	41
72	How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. Journal of Cleaner Production, 2018, 202, 510-523.	9.3	149

#	Article	IF	CITATIONS
73	Potential economic gains and emissions reduction on carbon emissions trading for China's large-scale thermal power plants. Journal of Cleaner Production, 2018, 204, 247-257.	9.3	34
74	Carbon footprint assessment for a local branded pure milk product: a lifecycle based approach. Food Science and Technology, 2018, 38, 98-105.	1.7	12
75	What contributes to total factor productivity growth in the Chinese banking sector?. Technological and Economic Development of Economy, 2018, 24, 792-811.	4.6	4
76	The effect of new-type urbanization on energy consumption in China: a spatial econometric analysis. Journal of Cleaner Production, 2017, 163, S299-S305.	9.3	110
77	An optimization model for green supply chain management by using a big data analytic approach. Journal of Cleaner Production, 2017, 142, 1085-1097.	9.3	230
78	Sustainability characteristics of China's Poyang Lake Eco-Economics Zone in the big data environment. Journal of Cleaner Production, 2017, 142, 642-653.	9.3	35
79	Analysis on spatial-temporal features of taxis' emissions from big data informed travel patterns: a case of Shanghai, China. Journal of Cleaner Production, 2017, 142, 926-935.	9.3	108
80	Feasibility of a new-generation nighttime light data for estimating in-use steel stock of buildings and civil engineering infrastructures. Resources, Conservation and Recycling, 2017, 123, 11-23.	10.8	36
81	An improved skyline based heuristic for the 2D strip packing problem and its efficient implementation. Computers and Operations Research, 2017, 80, 113-127.	4.0	40
82	How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy, 2017, 107, 678-687.	8.8	367
83	Carbon emission reduction potentials under different polices in Chinese cities: A scenario-based analysis. Journal of Cleaner Production, 2017, 161, 1226-1236.	9.3	18
84	Scale of Production, Agglomeration and Agricultural Pollutant Treatment: Evidence From a Survey in China. Ecological Economics, 2017, 140, 30-45.	5.7	16
85	Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China. Journal of Environmental Management, 2017, 197, 130-139.	7.8	94
86	Unequal household carbon footprints in China. Nature Climate Change, 2017, 7, 75-80.	18.8	345
87	Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model. Energy Economics, 2017, 68, 89-108.	12.1	68
88	Spatiotemporal changes and fragmentation of forest land in Jiangxi Province, China. Journal of Forest Economics, 2017, 29, 4-13.	0.2	14
89	Carbon footprint of China's belt and road. Science, 2017, 357, 1107-1107.	12.6	134
90	Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China. Resources, Conservation and Recycling, 2017, 119, 78-88.	10.8	144

#	Article	IF	Citations
91	Material flows and resource productivity in China, South Korea and Japan from 1970 to 2008: A transitional perspective. Journal of Cleaner Production, 2017, 141, 1164-1177.	9.3	57
92	A Review of Low-Carbon Transformation and Energy Innovation Issues in China. Sustainability, 2017, 9, 1238.	3.2	1
93	Toward a Sustainable Low-Carbon China: A Review of the Special Issue of "Energy Economics and Management― Sustainability, 2016, 8, 823.	3.2	7
94	Industrial Carbon Emissions of China's Regions: A Spatial Econometric Analysis. Sustainability, 2016, 8, 210.	3.2	28
95	Farmers' preferences for livestock pollution control policy in China: a choice experiment method. Journal of Cleaner Production, 2016, 131, 572-582.	9.3	41
96	Sustainable water resource and endogenous economic growth. Technological Forecasting and Social Change, 2016, 112, 237-244.	11.6	17
97	A coin has two sides: Which one is driving China's green TFP growth?. Economic Systems, 2016, 40, 481-498.	2.2	69
98	The energy rebound effects across China's industrial sectors: An output distance function approach. Applied Energy, 2016, 184, 1165-1175.	10.1	44
99	Integral representation of vega for American put options. Finance Research Letters, 2016, 19, 204-208.	6.7	1
100	Marginal abatement cost of pollutants for China: A nonparametric approach. Energy Sources, Part B: Economics, Planning and Policy, 2016, 11, 753-759.	3.4	6
101	Carbon emissions from fossil fuel consumption of Beijing in 2012. Environmental Research Letters, 2016, 11, 114028.	5.2	68
102	Is the hydrogen production from biomass technology really sustainable? Answer by life cycle emergy analysis. International Journal of Hydrogen Energy, 2016, 41, 10507-10514.	7.1	17
103	Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis. Resources and Energy Economics, 2016, 43, 14-32.	2.5	116
104	Balancing regional industrial development: analysis on regional disparity of China's industrial emissions and policy implications. Journal of Cleaner Production, 2016, 126, 223-235.	9.3	73
105	Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors. Energy, 2016, 99, 10-19.	8.8	152
106	Carbon emissions reductions and technology gaps in the world's factory, 1990–2012. Energy Policy, 2016, 91, 28-37.	8.8	55
107	The Efficiency and Its Determinants for China's Medical Care System: Some Policy Implications for Northeast Asia. Sustainability, 2015, 7, 14092-14111.	3.2	17
108	Metafrontier Environmental Efficiency for China's Regions: A Slack-Based Efficiency Measure. Sustainability, 2015, 7, 4004-4021.	3.2	27

#	Article	IF	CITATIONS
109	Sustainability of Trade Liberalization and Antidumping: Evidence from Mexico's Trade Liberalization toward China. Sustainability, 2015, 7, 11484-11503.	3.2	7
110	Regional Water Footprint Assessment: A Case Study of Leshan City. Sustainability, 2015, 7, 16532-16547.	3.2	13
111	On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China's Poyang Lake Ecological Economics Zone. Computational Economics, 2015, 46, 389-404.	2.6	27
112	Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach. Empirical Economics, 2015, 49, 1017-1043.	3.0	57
113	Toward green IT: Modeling sustainable production characteristics for Chinese electronic information industry, 1980–2012. Technological Forecasting and Social Change, 2015, 96, 62-70.	11.6	79
114	A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case. Energy Economics, 2015, 51, 88-98.	12.1	56
115	Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy, 2015, 90, 1532-1544.	8.8	41
116	Introduction to the Special Issue on "the Sustainable Asia Conference 2014â€: Sustainability, 2015, 7, 1595-1602.	3.2	9
117	Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Applied Energy, 2015, 146, 409-420.	10.1	175
118	Strategic corporate sustainability performance of Chinese state-owned listed firms: A meta-frontier generalized directional distance function approach. Social Science Journal, 2015, 52, 300-310.	1.5	15
119	Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renewable and Sustainable Energy Reviews, 2015, 41, 584-593.	16.4	206
120	Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecological Indicators, 2015, 51, 165-172.	6.3	162
121	Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis. Sustainability, 2014, 6, 3504-3520.	3.2	38
122	A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renewable and Sustainable Energy Reviews, 2014, 33, 50-59.	16.4	199
123	Measuring sustainability performance for China: A sequential generalized directional distance function approach. Economic Modelling, 2014, 41, 392-397.	3.8	50
124	The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 2014, 70, 193-200.	8.8	188
125	Determinants of Farmers' Willingness to Pay and Its Level for Ecological Compensation of Poyang Lake Wetland, China: A Household-Level Survey. Sustainability, 2014, 6, 6714-6728.	3.2	33
126	Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure. Sustainability, 2014, 6, 1414-1426.	3.2	24

#	Article	IF	CITATION
127	Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Economics, 2013, 40, 549-559.	12.1	331
128	Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis. Energy Policy, 2013, 56, 653-662.	8.8	316
129	A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy, 2013, 62, 324-332.	8.8	135
130	Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy, 2013, 58, 277-283.	8.8	386
131	Environmental energy efficiency of China's regional economies: A non-oriented slacks-based measure analysis. Social Science Journal, 2013, 50, 225-234.	1.5	226
132	Quantitative Ecological Risk Analysis by Evaluating China's Eco-Efficiency and Its Determinants. Human and Ecological Risk Assessment (HERA), 2013, 19, 1324-1337.	3.4	17
133	Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Applied Energy, 2012, 98, 198-208.	10.1	500
134	Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries. Energy Economics, 2012, 34, 1492-1497.	12.1	172
135	Air Pollution and Corporate Innovation: Chinese Evidence. SSRN Electronic Journal, 0, , .	0.4	0
136	Environmental Regulation and Worker Benefits: Evidence from City-Level Air Quality Standards in China. SSRN Electronic Journal, 0, , .	0.4	4