
Paul M O'connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. American Journal of Physiology - Renal Physiology, 2008, 295, F1259-F1270.	2.7	235
2	Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 106-122.	1.9	209
3	RENAL OXYGEN DELIVERY: MATCHING DELIVERY TO METABOLIC DEMAND. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 961-967.	1.9	159
4	Increased Expression of NAD(P)H Oxidase Subunit p67phox in the Renal Medulla Contributes to Excess Oxidative Stress and Salt-Sensitive Hypertension. Cell Metabolism, 2012, 15, 201-208.	16.2	131
5	Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation. American Journal of Physiology - Renal Physiology, 2007, 292, F1726-F1733.	2.7	91
6	Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. American Journal of Physiology - Renal Physiology, 2015, 308, F179-F197.	2.7	88
7	Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. American Journal of Physiology - Renal Physiology, 2006, 290, F688-F694.	2.7	79
8	Identification of novel macropinocytosis inhibitors using a rational screen of Food and Drug Administrationâ€approved drugs. British Journal of Pharmacology, 2018, 175, 3640-3655.	5.4	77
9	Enhanced Superoxide Production in Renal Outer Medulla of Dahl Salt-Sensitive Rats Reduces Nitric Oxide Tubular-Vascular Cross-Talk. Hypertension, 2007, 49, 1336-1341.	2.7	76
10	Deficiency of Renal Cortical EGF Increases ENaC Activity and Contributes to Salt-Sensitive Hypertension. Journal of the American Society of Nephrology: JASN, 2013, 24, 1053-1062.	6.1	69
11	Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. American Journal of Physiology - Renal Physiology, 2006, 291, F350-F357.	2.7	62
12	Factors that render the kidney susceptible to tissue hypoxia in hypoxemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R931-R940.	1.8	60
13	Modulation of Pressure-Natriuresis by Renal Medullary Reactive Oxygen Species and Nitric Oxide. Current Hypertension Reports, 2010, 12, 86-92.	3.5	55
14	Basal renal O ₂ consumption and the efficiency of O ₂ utilization for Na ⁺ reabsorption. American Journal of Physiology - Renal Physiology, 2014, 306, F551-F560.	2.7	53
15	NAD(P)H oxidase and renal epithelial ion transport. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1023-R1029.	1.8	52
16	RENAL PREGLOMERULAR ARTERIAL–VENOUS O ₂ SHUNTING IS A STRUCTURAL ANTIâ€OXIDANT DEFENCE MECHANISM OF THE RENAL CORTEX. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 637-641.	1.9	47
17	Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. Journal of Clinical Investigation, 2016, 126, 1425-1437.	8.2	47
18	A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney. American Journal of Physiology - Renal Physiology, 2011, 300, F1339-F1352.	2.7	46

PAUL M O'CONNOR

#	Article	IF	CITATIONS
19	Developmental Exposure to Endocrine Disruptors Expands Murine Myometrial Stem Cell Compartment as a Prerequisite to Leiomyoma Tumorigenesis. Stem Cells, 2017, 35, 666-678.	3.2	46
20	High-salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism. American Journal of Physiology - Renal Physiology, 2014, 307, F33-F40.	2.7	44
21	Increase of sodium delivery stimulates the mitochondrial respiratory chain H ₂ O ₂ production in rat renal medullary thick ascending limb. American Journal of Physiology - Renal Physiology, 2012, 302, F95-F102.	2.7	43
22	Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits. American Journal of Physiology - Renal Physiology, 2010, 298, F1235-F1243.	2.7	40
23	Endothelinâ€1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. British Journal of Pharmacology, 2016, 173, 386-395.	5.4	37
24	Chronic ANG II infusion induces sex-specific increases in renal T cells in Sprague-Dawley rats. American Journal of Physiology - Renal Physiology, 2015, 308, F706-F712.	2.7	35
25	METHODS FOR STUDYING THE PHYSIOLOGY OF KIDNEY OXYGENATION. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1405-1412.	1.9	32
26	Ischemic Renal Injury: Can Renal Anatomy and Associated Vascular Congestion Explain Why the Medulla and Not the Cortex Is Where the Trouble Starts?. Seminars in Nephrology, 2019, 39, 520-529.	1.6	28
27	Vasopressin-induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway. American Journal of Physiology - Renal Physiology, 2007, 293, F526-F532.	2.7	27
28	Sex differences in ET-1 receptor expression and Ca ²⁺ signaling in the IMCD. American Journal of Physiology - Renal Physiology, 2013, 305, F1099-F1104.	2.7	27
29	Measurement of Renal Tissue Oxygen Tension: Systematic Differences between Fluorescence Optode and Microelectrode Recordings in Anaesthetized Rabbits. Nephron Physiology, 2008, 108, p11-p17.	1.2	26
30	Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R723-R727.	1.8	26
31	Stability of tissue PO ₂ in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 247-254.	1.9	26
32	<scp>ET</scp> â€1 increases reactive oxygen species following hypoxia and highâ€salt diet in the mouse glomerulus. Acta Physiologica, 2015, 213, 722-730.	3.8	26
33	Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats. American Journal of Physiology - Renal Physiology, 2017, 313, F1097-F1105.	2.7	24
34	Oral NaHCO3 Activates a Splenic Anti-Inflammatory Pathway: Evidence That Cholinergic Signals Are Transmitted via Mesothelial Cells. Journal of Immunology, 2018, 200, 3568-3586.	0.8	22
35	IL-18 (Interleukin-18) Produced by Renal Tubular Epithelial Cells Promotes Renal Inflammation and Injury During Deoxycorticosterone/Salt-Induced Hypertension in Mice. Hypertension, 2021, 78, 1296-1309.	2.7	22
36	Medullary Thick Ascending Limb Buffer Vasoconstriction of Renal Outer-Medullary Vasa Recta in Salt-Resistant But Not Salt-Sensitive Rats. Hypertension, 2012, 60, 965-972.	2.7	19

PAUL M O'CONNOR

#	Article	IF	CITATIONS
37	Resurrecting Hope for Antioxidant Treatment of Cardiovascular Disease. Circulation Research, 2010, 107, 9-11.	4.5	18
38	Increased Proliferative Cells in the Medullary Thick Ascending Limb of the Loop of Henle in the Dahl Salt-Sensitive Rat. Hypertension, 2013, 61, 208-215.	2.7	18
39	HV1 Acts as a Sodium Sensor and Promotes Superoxide Production in Medullary Thick Ascending Limb of Dahl Salt-Sensitive Rats. Hypertension, 2014, 64, 541-550.	2.7	18
40	Regional Frontal Perfusion Deficits in Relapsing-Remitting Multiple Sclerosis with Cognitive Decline. American Journal of Neuroradiology, 2016, 37, 1800-1807.	2.4	18
41	Alkali supplementation as a therapeutic in chronic kidney disease: what mediates protection?. American Journal of Physiology - Renal Physiology, 2020, 319, F1090-F1104.	2.7	18
42	Enhanced amiloride-sensitive superoxide production in renal medullary thick ascending limb of Dahl salt-sensitive rats. American Journal of Physiology - Renal Physiology, 2008, 295, F726-F733.	2.7	17
43	A Novel Amiloride-Sensitive H ⁺ Transport Pathway Mediates Enhanced Superoxide Production in Thick Ascending Limb of Salt-Sensitive Rats, Not Na ⁺ /H ⁺ Exchange. Hypertension, 2009, 54, 248-254.	2.7	17
44	Initiation and Progression of Chronic Kidney Disease. Hypertension, 2013, 62, 827-828.	2.7	13
45	Sodium bicarbonate loading limits tubular cast formation independent of glomerular injury and proteinuria in Dahl salt-sensitive rats. Clinical Science, 2018, 132, 1179-1197.	4.3	12
46	Kidney-targeted inhibition of protein kinase C-α ameliorates nephrotoxic nephritis with restoration of mitochondrial dysfunction. Kidney International, 2018, 94, 280-291.	5.2	12
47	Simultaneous Measurement of pO2 and Perfusion in The Rabbit Kidney in Vivo. , 2007, 599, 93-99.		12
48	The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis. Kidney International, 2019, 95, 1359-1372.	5.2	11
49	Necrosis Contributes to the Development of Hypertension in Male, but Not Female, Spontaneously Hypertensive Rats. Hypertension, 2019, 74, 1524-1531.	2.7	10
50	A basic solution to activate the cholinergic anti-inflammatory pathway via the mesothelium?. Pharmacological Research, 2019, 141, 236-248.	7.1	10
51	Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation. Journal of the American Society of Nephrology: JASN, 2022, 33, 769-785.	6.1	10
52	Proton channels and renal hypertensive injury: a key piece of the Dahl salt-sensitive rat puzzle?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R679-R690.	1.8	9
53	Neurovascular protection in voltageâ€gated proton channel Hv1 knockâ€out rats after ischemic stroke: interaction with Na ⁺ /H ⁺ exchangerâ€1 antagonism. Physiological Reports, 2019, 7, e14142.	1.7	9
54	Greater high-mobility group box 1 in male compared with female spontaneously hypertensive rats worsens renal ischemia–reperfusion injury. Clinical Science, 2020, 134, 1751-1762.	4.3	9

PAUL M O'CONNOR

#	Article	IF	CITATIONS
55	Voltage gated proton channels modulate mitochondrial reactive oxygen species production by complex I in renal medullary thick ascending limb. Redox Biology, 2019, 27, 101191.	9.0	8
56	Local maximum oxygen disappearance rate has limited utility as a measure of local renal tissue oxygen consumption. Journal of Pharmacological and Toxicological Methods, 2010, 61, 297-303.	0.7	7
57	Ultrasound measurement of change in kidney volume is a sensitive indicator of severity of renal parenchymal injury. American Journal of Physiology - Renal Physiology, 2020, 319, F447-F457.	2.7	7
58	Persistent vascular congestion in male spontaneously hypertensive rats contributes to delayed recovery of renal function following renal ischemia perfusion compared with females. Clinical Science, 2022, 136, 825-840.	4.3	6
59	Comparison of Quantitative Cerebral Blood Flow Measurements Performed by Bookend Dynamic Susceptibility Contrast and Arterial Spin-Labeling MRI in Relapsing-Remitting Multiple Sclerosis. American Journal of Neuroradiology, 2016, 37, 2265-2272.	2.4	4
60	Renal mass reduction increases the response to exogenous insulin independent of acid-base status or plasma insulin levels in rats. American Journal of Physiology - Renal Physiology, 2021, 321, F494-F504.	2.7	4
61	A radical approach to balancing the tides of tubular flow. American Journal of Physiology - Renal Physiology, 2014, 307, F917-F918.	2.7	3
62	Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys. Scientific Reports, 2022, 12, 1646.	3.3	3
63	Letter to the Editor. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 658-658.	1.9	2
64	Vasopressin V2 receptor mediated Ca2+ transients in the rat inner medullary collecting duct are dependent on phospholipase C and extracellular Ca2+. FASEB Journal, 2006, 20, A1220.	0.5	2
65	Going with the flow: updating old techniques to gain insight into regional kidney hemodynamics. Physiological Reports, 2019, 7, e14103.	1.7	Ο
66	Potassium Loss Promotes Impairments in Insulin Sensitivity in Rats. FASEB Journal, 2021, 35, .	0.5	0
67	Rank product analysis of gene expression in the medullary thick ascending limb of Henle of Dahl saltâ€sensitive rats compared to saltâ€resistant SS.13BN consomic rats during the development of saltâ€sensitive hypertension. FASEB Journal, 2011, 25, 662.3.	0.5	Ο
68	Role of the epithelial sodium channel (ENaC) in the development of saltâ€sensitive hypertension. FASEB Journal, 2012, 26, 867.8.	0.5	0
69	EGF deficiency contributes to the development of saltâ€sensitive hypertension via upregulation of ENaC activity. FASEB Journal, 2012, 26, 867.9.	0.5	Ο
70	NADPH oxidase and ETA receptors mediate glomerular reactive oxygen species production in sickle cell nephropathy. FASEB Journal, 2013, 27, .	0.5	0
71	Bicarbonate Therapy Alleviates Hypertensionâ€Induced Renal Injury In Dahl Saltâ€Sensitive Rats Independent of Systemic Blood Pressure. FASEB Journal, 2015, 29, 960.24.	0.5	0
72	Striking Differences in Urinary Uromodulin, Saltâ€sensitive Hypertension and Proteinuria in Dahl SS vs. SS.BN1 Consomic Rats. FASEB Journal, 2018, 32, 716.9.	0.5	0

#	Article	IF	CITATIONS
73	Prevention of Vascular Congestion Improves Renal Recovery and Function Post Renal Ischemiaâ€Reperfusion in Male Spontaneous Hypertensive Rats. FASEB Journal, 2019, 33, 864.2.	0.5	0