Wolfgang Kandioller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5091344/publications.pdf

Version: 2024-02-01

76 papers 2,678 citations

27 h-index

201385

197535 49 g-index

80 all docs

80 docs citations

80 times ranked

2539 citing authors

#	Article	lF	CITATIONS
1	Structure–Activity Relationships of Targeted Ru ^{II} (Î- ⁶ - <i>p</i> Cymene) Anticancer Complexes with Flavonol-Derived Ligands. Journal of Medicinal Chemistry, 2012, 55, 10512-10522.	2.9	132
2	Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. Chemical Communications, 2012, 48, 4839.	2.2	130
3	Organometallic anticancer complexes of lapachol: metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chemical Communications, 2013, 49, 3348.	2.2	127
4	Maltolâ€Derived Ruthenium–Cymene Complexes with Tumor Inhibiting Properties: The Impact of Ligand–Metal Bond Stability on Anticancer Activity In Vitro. Chemistry - A European Journal, 2009, 15, 12283-12291.	1.7	111
5	Physicochemical Studies and Anticancer Potency of Ruthenium Î- ⁶ - <i>p</i> Complexes Containing Antibacterial Quinolones. Organometallics, 2011, 30, 2506-2512.	1.1	105
6	Is the Reactivity of $M(II)\hat{a}^2$ Arene Complexes of 3-Hydroxy-2(1 <i>H</i>)-pyridones to Biomolecules the Anticancer Activity Determining Parameter?. Inorganic Chemistry, 2010, 49, 7953-7963.	1.9	101
7	Osmium(ii)–versus ruthenium(ii)–arene carbohydrate-based anticancer compounds: similarities and differences. Dalton Transactions, 2010, 39, 7345.	1.6	88
8	Pyrone derivatives and metals: From natural products to metal-based drugs. Journal of Organometallic Chemistry, 2011, 696, 999-1010.	0.8	86
9	From Pyrone to Thiopyrone Ligandsâ^'Rendering Maltol-Derived Ruthenium(II)â^'Arene Complexes That Are Anticancer Active in Vitro. Organometallics, 2009, 28, 4249-4251.	1.1	85
10	Novel thiosalicylate-based ionic liquids for heavy metal extractions. Journal of Hazardous Materials, 2016, 314, 164-171.	6.5	82
11	Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties. Journal of Hazardous Materials, 2017, 324, 241-249.	6.5	82
12	3-Hydroxyflavones vs. 3-hydroxyquinolinones: structure–activity relationships and stability studies on Ru ^{II} (arene) anticancer complexes with biologically active ligands. Dalton Transactions, 2013, 42, 6193-6202.	1.6	74
13	Antitumor pentamethylcyclopentadienyl rhodium complexes of maltol and allomaltol: Synthesis, solution speciation and bioactivity. Journal of Inorganic Biochemistry, 2014, 134, 57-65.	1.5	73
14	From hydrolytically labile to hydrolytically stable Rull–arene anticancer complexes with carbohydrate-derived co-ligands. Journal of Inorganic Biochemistry, 2011, 105, 224-231.	1.5	65
15	Tuning the anticancer activity of maltol-derived ruthenium complexes by derivatization of the 3-hydroxy-4-pyrone moiety. Journal of Organometallic Chemistry, 2009, 694, 922-929.	0.8	64
16	Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics, 2012, 31, 5867-5874.	1.1	62
17	Identification of the Structural Determinants for Anticancer Activity of a Ruthenium Arene Peptide Conjugate. Chemistry - A European Journal, 2013, 19, 9297-9307.	1.7	58
18	Improved reaction conditions for the synthesis of new NKP-1339 derivatives and preliminary investigations on their anticancer potential. Dalton Transactions, 2015, 44, 659-668.	1.6	57

#	Article	IF	Citations
19	Biomolecule binding vs. anticancer activity: Reactions of Ru(arene) [(thio)pyr-(id)one] compounds with amino acids and proteins. Journal of Inorganic Biochemistry, 2012, 108, 91-95.	1.5	53
20	Introducing the 4-Phenyl-1,2,3-Triazole Moiety as a Versatile Scaffold for the Development of Cytotoxic Ruthenium(II) and Osmium(II) Arene Cyclometalates. Inorganic Chemistry, 2017, 56, 528-541.	1.9	52
21	Modifying the structure of dinuclear ruthenium complexes with antitumor activity. Applied Organometallic Chemistry, 2008, 22, 326-332.	1.7	45
22	Towards targeting anticancer drugs: ruthenium(<scp>ii</scp>)â€"arene complexes with biologically active naphthoquinone-derived ligand systems. Dalton Transactions, 2016, 45, 13091-13103.	1.6	45
23	Novel 3-Hydroxy-2-Naphthoate-Based Task-Specific Ionic Liquids for an Efficient Extraction of Heavy Metals. Frontiers in Chemistry, 2018, 6, 172.	1.8	35
24	Influence of the Arene Ligand and the Leaving Group on the Anticancer Activity of (Thio)maltol Ruthenium(II)–(η6-Arene) Complexes. Australian Journal of Chemistry, 2010, 63, 1521.	0.5	33
25	Thiomaltolâ€Based Organometallic Complexes with 1â€Methylimidazole as Leaving Group: Synthesis, Stability, and Biological Behavior. Chemistry - A European Journal, 2016, 22, 17269-17281.	1.7	32
26	Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates. Dalton Transactions, 2017, 46, 12114-12124.	1.6	32
27	Synthetic iron complexes as models for natural iron-humic compounds: Synthesis, characterization and algal growth experiments. Science of the Total Environment, 2017, 577, 94-104.	3.9	32
28	Thioglycolate-based task-specific ionic liquids: Metal extraction abilities vs acute algal toxicity. Journal of Hazardous Materials, 2017, 340, 113-119.	6.5	29
29	1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules, 2020, 25, 3576.	1.7	28
30	Mannich products of kojic acid and N-heterocycles and their Ru(II)–arene complexes: Synthesis, characterization and stability. Journal of Organometallic Chemistry, 2010, 695, 875-881.	0.8	26
31	DNA or protein? Capillary zone electrophoresis–mass spectrometry rapidly elucidates metallodrug binding selectivity. Chemical Communications, 2017, 53, 8002-8005.	2.2	26
32	1,3-Dioxoindan-2-carboxamides as Bioactive Ligand Scaffolds for the Development of Novel Organometallic Anticancer Drugs. Organometallics, 2015, 34, 848-857.	1.1	25
33	Solution equilibria of anticancer ruthenium(II)-(\hat{l} -6-p-cymene)-hydroxy(thio)pyr(id)one complexes: Impact of sulfur vs. oxygen donor systems on the speciation and bioactivity. Journal of Inorganic Biochemistry, 2013, 127, 161-168.	1.5	24
34	Photoreduction of Terrigenous Feâ€Humic Substances Leads to Bioavailable Iron in Oceans. Angewandte Chemie - International Edition, 2016, 55, 6417-6422.	7.2	24
35	Comparative solution equilibrium studies on pentamethylcyclopentadienyl rhodium complexes of 2,2 \hat{E}^1 -bipyridine and ethylenediamine and their interaction with human serum albumin. Journal of Inorganic Biochemistry, 2015, 152, 93-103.	1.5	23
36	Fast and Highly Efficient Affinity Enrichment of Azide-A-DSBSO Cross-Linked Peptides. Journal of Proteome Research, 2020, 19, 2071-2079.	1.8	23

#	Article	IF	CITATIONS
37	Solution equilibria and antitumor activities of pentamethylcyclopentadienyl rhodium complexes of picolinic acid and deferiprone. Journal of Coordination Chemistry, 2015, 68, 1583-1601.	0.8	22
38	The Hydration of Chloroacetonitriles Catalyzed by Mono―and Dinuclear Ru ^{II} ―and Os ^{II} â€Arene Complexes. Chemistry and Biodiversity, 2008, 5, 2060-2066.	1.0	21
39	Benzoic hydroxamate-based iron complexes as model compounds for humic substances: synthesis, characterization and algal growth experiments. RSC Advances, 2016, 6, 40238-40249.	1.7	21
40	Flavonoidâ€Based Organometallics with Different Metal Centers – Investigations of the Effects on Reactivity and Cytotoxicity. European Journal of Inorganic Chemistry, 2016, 2016, 240-246.	1.0	21
41	Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics. Dalton Transactions, 2016, 45, 724-733.	1.6	20
42	Ruthenium–arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition. Dalton Transactions, 2019, 48, 12040-12049.	1.6	20
43	Facile Synthesis and Ring-Opening Cross Metathesis of Carbo- and Heterocyclic Bicyclo[3.2.1]oct-6-en-3-ones Using Gaseous Olefinic Reaction Partners. Advanced Synthesis and Catalysis, 2006, 348, 463-470.	2.1	18
44	<i>N</i> - and <i>S</i> -donor leaving groups in triazole-based ruthena(<scp>ii</scp>)cycles: potent anticancer activity, selective activation, and mode of action studies. Dalton Transactions, 2018, 47, 4625-4638.	1.6	18
45	Structural and solution equilibrium studies on half-sandwich organorhodium complexes of (N,N) donor bidentate ligands. New Journal of Chemistry, 2018, 42, 11174-11184.	1.4	18
46	Synthesis and Enantioselective Baeyer-Villiger Oxidation of Prochiral Perhydro-pyranones with Recombinant E. coli Producing Cyclohexanone Monooxygenase. Synlett, 2003, 2003, 1973-1976.	1.0	17
47	Organometallic Ruthenium and Osmium Compounds of Pyridinâ€2―and â€4â€ones as Potential Anticancer Agents. Chemistry and Biodiversity, 2012, 9, 1718-1727.	1.0	17
48	Rhodium(Cp*) Compounds with Flavoneâ€derived Ligand Systems: Synthesis and Characterization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1648-1654.	0.6	17
49	Recombinant Wholeâ€Cell Mediated <i>Baeyer–Villiger</i> Oxidation of Perhydropyranâ€Type Ketones. Chemistry and Biodiversity, 2008, 5, 490-498.	1.0	16
50	Biological evaluation of novel thiomaltol-based organometallic complexes as topoisomerase IIα inhibitors. Journal of Biological Inorganic Chemistry, 2020, 25, 451-465.	1.1	16
51	Expanding on the Structural Diversity of Flavone- Derived Rutheniumll(Æž6-arene) Anticancer Agents. Metallodrugs, 2015, 1 , .	1.7	15
52	Organometallic complexes of (thio)allomaltol-based Mannich-products: Synthesis, stability and preliminary biological investigations. Journal of Organometallic Chemistry, 2015, 782, 69-76.	0.8	15
53	Solvent Bar Micro-Extraction of Heavy Metals from Natural Water Samples Using 3-Hydroxy-2-Naphthoate-Based Ionic Liquids. Molecules, 2018, 23, 3011.	1.7	15
54	Extraction of natural radionuclides from aqueous solutions by novel maltolate-based task-specific ionic liquids. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 2483-2488.	0.7	14

#	Article	IF	CITATIONS
55	Microwave-assisted synthesis of N-heterocycle-based organometallics. Journal of Organometallic Chemistry, 2014, 772-773, 93-99.	0.8	14
56	Solvent bar micro-extraction for greener application of task specific ionic liquids in multi-elemental extraction. Journal of Cleaner Production, 2018, 201, 22-27.	4.6	14
57	Functionalization of Ruthenium(II)(η ⁶ â€ <i>p</i> i>a€€ymene)(3â€hydroxyâ€2â€pyridone) Complexes v (Thio)Morpholine: Synthesis and Bioanalytical Studies. ChemPlusChem, 2017, 82, 841-847.	vith 1.3	13
58	Elemental analysis: an important purity control but prone to manipulations. Inorganic Chemistry Frontiers, 2022, 9, 412-416.	3.0	13
59	The rearrangement of tosylated flavones to $1\hat{a}\in^2$ -(alkylamino)aurones with primary amines. Tetrahedron, 2015, 71, 8953-8959.	1.0	12
60	Comparative equilibrium and structural studies of new pentamethylcyclopentadienyl rhodium complexes bearing (O,N) donor bidentate ligands. Journal of Organometallic Chemistry, 2017, 846, 287-295.	0.8	10
61	IntroducingN-,P-, andS-donor leaving groups: an investigation of the chemical and biological properties of ruthenium, rhodium and iridium thiopyridone piano stool complexes. Dalton Transactions, 2020, 49, 15693-15711.	1.6	10
62	Synthesis, Modification, and Biological Evaluation of a Library of Novel Waterâ€Soluble Thiopyridoneâ€Based Organometallic Complexes and Their Unexpected (Biological) Behavior. Chemistry - A European Journal, 2020, 26, 5419-5433.	1.7	10
63	Investigations on the Anticancer Potential of Benzothiazole-Based Metallacycles. Frontiers in Chemistry, 2020, 8, 209.	1.8	10
64	Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorganic Chemistry, 2021, 60, 9805-9819.	1.9	9
65	The Impact of Leaving Group Variation on the Anticancer Activity of Molybdenocenes. Organometallics, 2018, 37, 3909-3916.	1.1	8
66	The First Anticancer Tris(pyrazolyl)borate Molybdenum(IV) Complexes: Tested in Vitro and in Vivo—A Comparison of O,O â€, S,O â€, and N, N―Chelate Effects. Chemistry - A European Journal, 2020, 26, 2211-2221.	1.7	8
67	Heavy Metal Extraction under Environmentally Relevant Conditions Using 3-Hydroxy-2-Naphthoate-Based Ionic Liquids: Extraction Capabilities vs. Acute Algal Toxicity. Applied Sciences (Switzerland), 2020, 10, 3157.	1.3	8
68	Novel phthiocol-based organometallics with tridentate coordination motif and their unexpected cytotoxic behaviour. Dalton Transactions, 2020, 49, 1393-1397.	1.6	8
69	Aqueous chemistry and antiproliferative activity of a pyrone-based phosphoramidate Ru(arene) anticancer agent. Dalton Transactions, 2014, 43, 9851.	1.6	7
70	Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group. Molecules, 2019, 24, 2373.	1.7	7
71	Naphthoquinones of natural origin: Aqueous chemistry and coordination to half-sandwich organometallic cations. Journal of Organometallic Chemistry, 2020, 907, 121070.	0.8	6
72	First insights into the novel class of organometallic compounds bearing a bidentate selenopyridone coordination motif: Synthesis, characterization, stability and biological investigations. Inorganica Chimica Acta, 2020, 513, 119919.	1.2	6

#	Article	IF	CITATIONS
73	Systematic Study on the Cytotoxic Potency of Commonly Used Dimeric Metal Precursors in Human Cancer Cell Lines. ChemistryOpen, 2022, 11, e202200019.	0.9	6
74	\hat{l}^2 -O-4 type dilignol compounds and their iron complexes for modeling of iron binding to humic acids: synthesis, characterization, electrochemical studies and algal growth experiments. New Journal of Chemistry, 2017, 41, 11546-11555.	1.4	5
75	Synthesis and Enantioselective Baeyer—Villiger Oxidation of Prochiral Perhydro-pyranones with Recombinant E. coli Producing Cyclohexanone Monooxygenase ChemInform, 2004, 35, no.	0.1	1
76	Water-soluble trithiolato-bridged dinuclear ruthenium(II) and osmium(II) arene complexes with bisphosphonate functionalized ligands as anticancer organometallics. Journal of Inorganic Biochemistry, 2021, 225, 111618.	1.5	1