Maarten Naesens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088629/publications.pdf

Version: 2024-02-01

257 papers

11,761 citations

56 h-index 98 g-index

267 all docs

267 docs citations

times ranked

267

10342 citing authors

#	Article	IF	CITATIONS
1	Diagnostic Accuracy of Noninvasive Bone Turnover Markers in Renal Osteodystrophy. American Journal of Kidney Diseases, 2022, 79, 667-676.e1.	2.1	25
2	Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. The Lancet Digital Health, 2022, 4, e18-e26.	5.9	43
3	Cell stress response impairs de novo NAD+ biosynthesis in the kidney. JCI Insight, 2022, 7, .	2.3	23
4	Estimated Renal Metabolomics at Reperfusion Predicts One-Year Kidney Graft Function. Metabolites, 2022, 12, 57.	1.3	1
5	Natural History of Bone Disease following Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2022, 33, 638-652.	3.0	12
6	Editorial: Transplant International Goes for GOLD!. Transplant International, 2022, 36, 10340.	0.8	2
7	Long-Term Survival after Kidney Transplantation. New England Journal of Medicine, 2022, 386, 497-500.	13.9	9
8	The Pre-Transplant Non-HLA Antibody Burden Associates With the Development of Histology of Antibody-Mediated Rejection After Kidney Transplantation. Frontiers in Immunology, 2022, 13, 809059.	2.2	7
9	Circulating Donor-Specific Anti-HLA Antibodies Associate With Immune Activation Independent of Kidney Transplant Histopathological Findings. Frontiers in Immunology, 2022, 13, 818569.	2.2	15
10	The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation. Nature Medicine, 2022, 28, 989-998.	15.2	20
11	Clinical, Functional, and Mental Health Outcomes in Kidney Transplant Recipients 3 Months After a Diagnosis of COVID-19. Transplantation, 2022, 106, 1012-1023.	0.5	8
12	Xenotransplantion: Defeating the "Shumway Curse―An Interview With Drs. Bartley Griffith, Jayme Locke, Robert Montgomery, and Bruno Reichart. Transplant International, 2022, 35, 10439.	0.8	2
13	Decreased Renal Gluconeogenesis Is a Hallmark of Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 810-827.	3.0	24
14	Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nature Medicine, 2022, 28, 999-1005.	15,2	15
15	Allorecognition and the spectrum of kidney transplant rejection. Kidney International, 2022, 101, 692-710.	2.6	65
16	Sub-growth-inhibitory concentrations of omadacycline inhibit <i>Staphylococcus aureus</i> haemolytic activity <i>in vitro</i> . JAC-Antimicrobial Resistance, 2022, 4, dlab190.	0.9	0
17	Noninvasive Diagnosis of Acute Rejection in Renal Transplant Patients Using Mass Spectrometric Analysis of Urine Samples: A Multicenter Diagnostic Phase III Trial. Transplantation Direct, 2022, 8, e1316.	0.8	7
18	Editorial: Rubies for ESOT!. Transplant International, 2022, 35, 10529.	0.8	O

#	Article	IF	CITATIONS
19	Activity of omadacycline in vitro against Clostridioides difficile and preliminary efficacy assessment in a hamster model of C. difficile-associated diarrhoea. Journal of Global Antimicrobial Resistance, 2022, 30, 96-99.	0.9	1
20	FC 117: Clinical Validation of Automated Urinary Chemokine Assays for Non-Invasive Detection of Kidney Transplant Rejection: A Large Prospective Cohort Study. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
21	MO590: A Home-Based Exercise and Physical Activity Intervention After Kidney Transplantation: Impact of Exercise Intensity. The Phoenix-Kidney Study Protocol. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	1
22	Biological pathways and comparison with biopsy signals and cellular origin of peripheral blood transcriptomic profiles during kidney allograft pathology. Kidney International, 2022, 102, 183-195.	2.6	9
23	Association of Predicted HLA T-Cell Epitope Targets and T-Cell–Mediated Rejection After Kidney Transplantation. American Journal of Kidney Diseases, 2022, 80, 718-729.e1.	2.1	6
24	Polyomavirus BK Genome Comparison Shows High Genetic Diversity in Kidney Transplant Recipients Three Months after Transplantation. Viruses, 2022, 14, 1533.	1.5	1
25	Microvascular inflammation: Gene expression changes do not necessarily reflect pathogenesis. American Journal of Transplantation, 2022, 22, 3180-3181.	2.6	2
26	The role of HLA-DP mismatches and donor specific HLA-DP antibodies in kidney transplantation: a case series. Transplant Immunology, 2021, 65, 101287.	0.6	15
27	Diagnostic performance of kSORT, a blood-based mRNA assay for noninvasive detection of rejection after kidney transplantation: A retrospective multicenter cohort study. American Journal of Transplantation, 2021, 21, 740-750.	2.6	22
28	Incidence, Characteristics, and Outcome of COVID-19 in Adults on Kidney Replacement Therapy: A Regionwide Registry Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 385-396.	3.0	101
29	Trajectories of glomerular filtration rate and progression to end stage kidney disease afterÂkidney transplantation. Kidney International, 2021, 99, 186-197.	2.6	40
30	Missing Self-Induced Activation of NK Cells Combines with Non-Complement-Fixing Donor-Specific Antibodies to Accelerate Kidney Transplant Loss in Chronic Antibody-Mediated Rejection. Journal of the American Society of Nephrology: JASN, 2021, 32, 479-494.	3.0	56
31	Does the definition of chronic active T cell–mediated rejection need revisiting?. American Journal of Transplantation, 2021, 21, 1689-1690.	2.6	4
32	Assessment of the Utility of Kidney Histology as a Basis for Discarding Organs in the United States: A Comparison of International Transplant Practices and Outcomes. Journal of the American Society of Nephrology: JASN, 2021, 32, 397-409.	3.0	40
33	Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 60-68.	0.4	35
34	The effect of IGL-1 preservation solution on outcome after kidney transplantation: A retrospective single-center analysis. American Journal of Transplantation, 2021, 21, 830-837.	2.6	4
35	Data-driven Derivation and Validation of Novel Phenotypes for Acute Kidney Transplant Rejection using Semi-supervised Clustering. Journal of the American Society of Nephrology: JASN, 2021, 32, 1084-1096.	3.0	28
36	Editorial: changing of the guard at Transplant International. Transplant International, 2021, 34, 609-609.	0.8	10

#	Article	IF	CITATIONS
37	Revisiting the changes in the Banff classification for antibody-mediated rejection after kidney transplantation. American Journal of Transplantation, 2021, 21, 2413-2423.	2.6	34
38	A 2020 Banff Antibodyâ€mediatedInjury Working Group examination of international practices for diagnosing antibodyâ€mediated rejection in kidney transplantation – a cohort study. Transplant International, 2021, 34, 488-498.	0.8	15
39	Blood transcriptomics as non-invasive marker for kidney transplant rejection. Nephrologie Et Therapeutique, 2021, 17, S78-S82.	0.2	4
40	Second field high-resolution HLA typing for immunologic risk stratification in kidney transplantation. American Journal of Transplantation, 2021, 21, 3502-3503.	2.6	4
41	"Time is tissueâ€â€"A minireview on the importance of donor nephrectomy, donor hepatectomy, and implantation times in kidney and liver transplantation. American Journal of Transplantation, 2021, 21, 2653-2661.	2.6	14
42	Task force groups of Transplant International: working together to globally connect the transplant community of tomorrow. Transplant International, 2021, 34, 767-768.	0.8	3
43	Current Methodological Challenges of Single-Cell and Single-Nucleus RNA-Sequencing in Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 1838-1852.	3.0	21
44	The power of online tools for dissemination: social media, visual abstract, and beyond. Transplant International, 2021, 34, 1174-1176.	0.8	3
45	COVID-19-related mortality in kidney transplant and haemodialysis patients: a comparative, prospective registry-based study. Nephrology Dialysis Transplantation, 2021, 36, 2094-2105.	0.4	65
46	Significance of HLA-DQ in kidney transplantation: time to reevaluate human leukocyte antigen–matching priorities to improve transplant outcomes? An expert review and recommendations. Kidney International, 2021, 100, 1012-1022.	2.6	35
47	Missing Self–Induced Microvascular Rejection of Kidney Allografts: A Population-Based Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 2070-2082.	3.0	38
48	Patterns of renal osteodystrophy 1 year after kidney transplantation. Nephrology Dialysis Transplantation, 2021, 36, 2130-2139.	0.4	11
49	Authors' Reply. Journal of the American Society of Nephrology: JASN, 2021, 32, 2388-2389.	3.0	0
50	Risk factors, histopathological features, and graft outcome of transplant glomerulopathy in the absence of donor-specific HLA antibodies. Kidney International, 2021, 100, 401-414.	2.6	19
51	Organ transplants of the future: planning for innovations including xenotransplantation. Transplant International, 2021, 34, 2006-2018.	0.8	11
52	Transplant International: a new beginning. Transplant International, 2021, 34, 1586-1587.	0.8	2
53	The evolution of histological changes suggestive of antibodyâ€mediated injury, in the presence and absence of donorâ€specific antiâ€HLA antibodies. Transplant International, 2021, 34, 1824-1836.	0.8	11
54	Static histomorphometry allows for a diagnosis of bone turnover in renal osteodystrophy in the absence of tetracycline labels. Bone, 2021, 152, 116066.	1.4	7

#	Article	IF	Citations
55	Deciphering transplant outcomes of expanded kidney allografts donated after controlled circulatory death in the current transplant era. A call for caution. Transplant International, 2021, 34, 2494-2506.	0.8	7
56	External Validation of the DynPG for Kidney Transplant Recipients. Transplantation, 2021, 105, 396-403.	0.5	5
57	Integrative Omics Analysis Unravels Microvascular Inflammation-Related Pathways in Kidney Allograft Biopsies. Frontiers in Immunology, 2021, 12, 738795.	2.2	8
58	Mesangial matrix expansion in a novel mouse model of diabetic kidney disease associated with the metabolic syndrome. Journal of Nephropathology, 2021, 10, e17-e17.	0.1	1
59	Forecasting of Patient-Specific Kidney Transplant Function With a Sequence-to-Sequence Deep Learning Model. JAMA Network Open, 2021, 4, e2141617.	2.8	7
60	Natural history of mineral metabolism, bone turnover and bone mineral density in de novo renal transplant recipients treated with a steroid minimization immunosuppressive protocol. Nephrology Dialysis Transplantation, 2020, 35, 697-705.	0.4	21
61	Delayed Bleeding of the Transplant Duodenum After Simultaneous Kidney-pancreas Transplantation: Case Series. Transplantation, 2020, 104, 184-189.	0.5	3
62	Antibodies Against ARHGDIB and ARHGDIB Gene Expression Associate With Kidney Allograft Outcome. Transplantation, 2020, 104, 1462-1471.	0.5	31
63	A Practical Guide to the Clinical Implementation of Biomarkers for Subclinical Rejection Following Kidney Transplantation. Transplantation, 2020, 104, 700-707.	0.5	20
64	The Causes of Kidney Allograft Failure: More Than Alloimmunity. A Viewpoint Article. Transplantation, 2020, 104, e46-e56.	0.5	45
65	Replicative senescence and arteriosclerosis after kidney transplantation. Nephrology Dialysis Transplantation, 2020, 35, 1984-1995.	0.4	6
66	Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nature Metabolism, 2020, 2, 732-743.	5.1	85
67	Urinary Protein Biomarker Panel for the Diagnosis of Antibody-Mediated Rejection in Kidney Transplant Recipients. Kidney International Reports, 2020, 5, 1448-1458.	0.4	26
68	Assessing the Complex Causes of Kidney Allograft Loss. Transplantation, 2020, 104, 2557-2566.	0.5	35
69	Eplet Mismatch Load and De Novo Occurrence of Donor-Specific Anti-HLA Antibodies, Rejection, and Graft Failure after Kidney Transplantation: An Observational Cohort Study. Journal of the American Society of Nephrology: JASN, 2020, 31, 2193-2204.	3.0	98
70	In reply to McGuinty et al Journal of Heart and Lung Transplantation, 2020, 39, 848-850.	0.3	0
71	TO006NON-INVASIVE DIAGNOSIS OF BK VIRUS-ASSOCIATED NEPHROPATHY USING URINARY PROTEOMICS IN KIDNEY ALLOGRAFT PATIENTS. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
72	Autoantibodies against granulocyte macrophage colonyâ€stimulating factor and <i>Nocardia</i> infection in solid organ transplant recipients. Transplant International, 2020, 33, 1827-1829.	0.8	1

#	Article	IF	CITATIONS
73	The Histological Picture of Indication Biopsies in the First 2 Weeks after Kidney Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1484-1493.	2.2	7
74	Identification and Characterization of Trajectories of Cardiac Allograft Vasculopathy After Heart Transplantation. Circulation, 2020, 141, 1954-1967.	1.6	50
75	Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation–Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. American Journal of Transplantation, 2020, 20, 2305-2317.	2.6	119
76	The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell– and antibody-mediated rejection. American Journal of Transplantation, 2020, 20, 2318-2331.	2.6	437
77	The association between use of proton-pump inhibitors and excess mortality after kidney transplantation: A cohort study. PLoS Medicine, 2020, 17, e1003140.	3.9	9
78	Transcriptional Changes in Kidney Allografts with Histology of Antibody-Mediated Rejection without Anti-HLA Donor-Specific Antibodies. Journal of the American Society of Nephrology: JASN, 2020, 31, 2168-2183.	3.0	60
79	Antibody-mediated rejection with and without donor-specific anti-human leucocyte antigen antibodies: performance of the peripheral blood 8-gene expression assay. Nephrology Dialysis Transplantation, 2020, 35, 1328-1337.	0.4	6
80	Development and validation of an optimized integrative model using urinary chemokines for noninvasive diagnosis of acute allograft rejection. American Journal of Transplantation, 2020, 20, 3462-3476.	2.6	38
81	Clinical importance of extended second field high-resolution HLA genotyping for kidney transplantation. American Journal of Transplantation, 2020, 20, 3367-3378.	2.6	54
82	Intrarenal arteriosclerosis and telomere attrition associate with dysregulation of the cholesterol pathway. Aging, 2020, 12, 7830-7847.	1.4	0
83	1202. Subinhibitory Concentrations of Omadacycline Inhibit Staphylococcus aureus Hemolytic Activity in Vitro. Open Forum Infectious Diseases, 2020, 7, S622-S623.	0.4	1
84	Title is missing!. , 2020, 17, e1003140.		0
85	Title is missing!. , 2020, 17, e1003140.		0
86	Title is missing!. , 2020, 17, e1003140.		0
87	Title is missing!. , 2020, 17, e1003140.		0
88	Title is missing!. , 2020, 17, e1003140.		0
89	Title is missing!. , 2020, 17, e1003140.		0
90	Banff survey on antibody-mediated rejection clinical practices in kidney transplantation: Diagnostic misinterpretation has potential therapeutic implications. American Journal of Transplantation, 2019, 19, 123-131.	2.6	35

#	Article	IF	CITATIONS
91	The special relativity of noninvasive biomarkers for acute rejection. American Journal of Transplantation, 2019, 19, 5-8.	2.6	9
92	Histological picture of antibody-mediated rejection without donor-specific anti-HLA antibodies: Clinical presentation and implications for outcome. American Journal of Transplantation, 2019, 19, 763-780.	2.6	102
93	Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: A multicentre, prospective study. EBioMedicine, 2019, 46, 463-472.	2.7	75
94	Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis. Kidney International, 2019, 96, 1195-1204.	2.6	17
95	A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. Journal of the American Society of Nephrology: JASN, 2019, 30, 1481-1494.	3.0	67
96	The EKiTE network (epidemiology in kidney transplantation - a European validated database): an initiative epidemiological and translational European collaborative research. BMC Nephrology, 2019, 20, 365.	0.8	11
97	Effect of donor nephrectomy time during circulatory-dead donor kidney retrieval on transplant graft failure. British Journal of Surgery, 2019, 107, 87-95.	0.1	16
98	Genomic Mismatch at <i>LIMS1</i> Locus and Kidney Allograft Rejection. New England Journal of Medicine, 2019, 381, e16.	13.9	3
99	Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ: British Medical Journal, 2019, 366, I4923.	2.4	191
100	Persistent primary cytomegalovirus infection in a kidney transplant recipient: Multi-drug resistant and compartmentalized infection leading to graft loss. Antiviral Research, 2019, 168, 203-209.	1.9	8
101	Specificity, strength, and evolution of pretransplant donor-specific HLA antibodies determine outcome after kidney transplantation. American Journal of Transplantation, 2019, 19, 3100-3113.	2.6	66
102	Do We Need Noninvasive Biomarkers for Delayed Graft Function After Kidney Transplantation?. Transplantation, 2019, 103, 870-872.	0.5	2
103	Bone mineral density, bone turnover markers, andÂincident fractures in de novo kidney transplantÂrecipients. Kidney International, 2019, 95, 1461-1470.	2.6	61
104	A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nature Communications, 2019, 10, 1157.	5.8	65
105	Occurrence of Diabetic Nephropathy After Renal Transplantation Despite Intensive Glycemic Control: An Observational Cohort Study. Diabetes Care, 2019, 42, 625-634.	4.3	19
106	Long-term outcome of cardiac allograft vasculopathy: Importance of the International Society for Heart and Lung Transplantation angiographic grading scale. Journal of Heart and Lung Transplantation, 2019, 38, 1189-1196.	0.3	30
107	Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nature Communications, 2019, 10, 5350.	5.8	100
108	Single Nucleotide Polymorphisms in Renal Transplantation: Cannot See the Wood for the Trees. Transplantation, 2019, 103, 2464-2465.	0.5	1

#	Article	IF	Citations
109	Indications, risks and impact of failed allograft nephrectomy. Transplantation Reviews, 2019, 33, 48-54.	1.2	20
110	Histological picture of ABMR without HLA-DSA: Temporal dynamics of effector mechanisms are relevant in disease reclassification. American Journal of Transplantation, 2019, 19, 954-955.	2.6	11
111	Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney International, 2019, 95, 188-198.	2.6	116
112	Poor Vitamin K Status Is Associated With Low Bone Mineral Density and Increased Fracture Risk in End-Stage Renal Disease. Journal of Bone and Mineral Research, 2019, 34, 262-269.	3.1	51
113	Reply to Hernandez et al GWAS of acute renal graft rejection. American Journal of Transplantation, 2018, 18, 2098-2099.	2.6	5
114	Ischemia-Induced DNA Hypermethylation during Kidney Transplant Predicts Chronic Allograft Injury. Journal of the American Society of Nephrology: JASN, 2018, 29, 1566-1576.	3.0	27
115	Diagnosis and management of asymptomatic bacteriuria in kidney transplant recipients: a survey of current practice in Europe. Nephrology Dialysis Transplantation, 2018, 33, 1661-1668.	0.4	32
116	The duration of asystolic ischemia determines the risk of graft failure after circulatory-dead donor kidney transplantation: A Eurotransplant cohort study. American Journal of Transplantation, 2018, 18, 881-889.	2.6	51
117	Precision Transplant Medicine: Biomarkers to the Rescue. Journal of the American Society of Nephrology: JASN, 2018, 29, 24-34.	3.0	74
118	The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. American Journal of Transplantation, 2018, 18, 293-307.	2.6	813
119	Intraoperative Renal Perfusion in Kidney Transplantation. Transplantation, 2018, 102, S557.	0.5	1
120	Time to Cast the Prejudices Towards Transplantation of Kidneys Donated After Cardiac Death?. EClinicalMedicine, 2018, 4-5, 4-5.	3.2	0
121	Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney International, 2018, 94, 964-973.	2.6	198
122	The 1-year Renal Biopsy Index: a scoring system to drive biopsy indication at 1-year post-kidney transplantation. Transplant International, 2018, 31, 947-955.	0.8	5
123	The clinical significance of epitope mismatch load in kidney transplantation: A multicentre study. Transplant Immunology, 2018, 50, 55-59.	0.6	22
124	Transcriptional trajectories of human kidney injury progression. JCI Insight, 2018, 3, .	2.3	80
125	Inflammatory macrophage–associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight, 2018, 3, .	2.3	27
126	Genome-Wide Association Study of Acute Renal Graft Rejection. American Journal of Transplantation, 2017, 17, 201-209.	2.6	50

#	Article	IF	Citations
127	Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis. Transplant International, 2017, 30, 695-705.	0.8	10
128	The time dependency of renal allograft histology. Transplant International, 2017, 30, 1081-1091.	0.8	13
129	Foretelling Graft Outcome by Molecular Evaluation of Renal Allograft Biopsies. Transplantation, 2017, 101, 5-7.	0.5	2
130	The Impact of Anastomosis Time During Kidney Transplantation on Graft Loss: A Eurotransplant Cohort Study. American Journal of Transplantation, 2017, 17, 726-734.	2.6	52
131	Rethinking peritubular capillary basement membrane multilayering in renal transplant pathology: a case report. Pediatric Nephrology, 2017, 32, 697-701.	0.9	0
132	Zero-Time Renal Transplant Biopsies. Transplantation, 2016, 100, 1425-1439.	0.5	50
133	Belatacept and Long-Term Outcomes in Kidney Transplantation. New England Journal of Medicine, 2016, 374, 2598-2601.	13.9	38
134	Decreased Circulating Sclerostin Levels in Renal Transplant Recipients With Persistent Hyperparathyroidism. Transplantation, 2016, 100, 2188-2193.	0.5	21
135	Establishing Biomarkers in Transplant Medicine. Transplantation, 2016, 100, 2024-2038.	0.5	71
136	BENEFIT of belatacept: kidney transplantation moves forward. Nature Reviews Nephrology, 2016, 12, 261-262.	4.1	9
137	RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection. American Journal of Transplantation, 2016, 16, 99-110.	2.6	49
138	Mineral metabolism disturbances in kidney donors: smoke, no fire (yet). Kidney International, 2016, 90, 734-736.	2.6	1
139	P136 De novo HLA antibodies with similar specificities in three recipients from the same deceased organ donor. Human Immunology, 2016, 77, 137.	1.2	0
140	Calcineurin Inhibitor Nephrotoxicity in the Era of Antibody-Mediated Rejection. Transplantation, 2016, 100, 1599-1600.	0.5	16
141	The Emerging Role of DNA Methylation in Kidney Transplantation: A Perspective. American Journal of Transplantation, 2016, 16, 1070-1078.	2.6	22
142	Lymphocyte-depleting induction and steroid minimization after kidney transplantation: A review. Nefrologia, 2016, 36, 469-480.	0.2	11
143	Intragraft Antiviral-Specific Gene Expression as a Distinctive Transcriptional Signature for Studies in Polyomavirus-Associated Nephropathy. Transplantation, 2016, 100, 2062-2070.	0.5	28
144	Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients. Nephrology Dialysis Transplantation, 2016, 31, 1508-1514.	0.4	32

#	Article	IF	CITATIONS
145	The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrology Dialysis Transplantation, 2016, 31, 1002-1013.	0.4	46
146	Rabbit antithymocyte globulin and donor-specific antibodies in kidney transplantation — A review. Transplantation Reviews, 2016, 30, 85-91.	1.2	32
147	The influence of renal transplantation on retained microbial–human co-metabolites. Nephrology Dialysis Transplantation, 2016, 31, 1721-1729.	0.4	35
148	Proteinuria as a Noninvasive Marker for Renal Allograft Histology and Failure. Journal of the American Society of Nephrology: JASN, 2016, 27, 281-292.	3.0	65
149	Design and Implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation, 2015, 99, 2401-2412.	0.5	60
150	Anastomosis time as risk factor for kidney transplant outcome: more pieces to the puzzle. Transplant International, 2015, 28, 1336-1337.	0.8	2
151	The Effect of Anastomosis Time on Outcome in Recipients of Kidneys Donated After Brain Death: A Cohort Study. American Journal of Transplantation, 2015, 15, 2900-2907.	2.6	43
152	Resolution of diffuse skin and systemic <scp>K</scp> aposi's sarcoma in a renal transplant recipient after introduction of everolimus: a case report. Transplant Infectious Disease, 2015, 17, 303-307.	0.7	22
153	Telomere length, cardiovascular risk and arteriosclerosis in human kidneys: an observational cohort study. Aging, 2015, 7, 766-775.	1.4	21
154	Microscopic nephrocalcinosis in chronic kidney disease patients. Nephrology Dialysis Transplantation, 2015, 30, 843-848.	0.4	17
155	Invasive Aspergillosis After Kidney Transplant: Case-Control Study. Clinical Infectious Diseases, 2015, 60, 1505-1511.	2.9	38
156	Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. American Journal of Kidney Diseases, 2015, 66, 699-709.	2.1	116
157	Soluble urokinase receptor is a biomarker of cardiovascular disease in chronic kidney disease. Kidney International, 2015, 87, 210-216.	2.6	52
158	Clinical Outcome and Cost Analysis of Kidney Transplantation From Extended Criteria Brain Death Donors Transplantation, 2014, 98, 653.	0.5	0
159	The Clinical Features of Trombotic Microangiopathies Post Transplantation Transplantation, 2014, 98, 532.	0.5	0
160	Perturbation in Gene Expression Due to Polyomavirus Nephropathy in Kidney Grafts Transplantation, 2014, 98, 224.	0.5	0
161	Anastomosis Time During Kidney Transplantation Influences Long-Term Allograft Function Transplantation, 2014, 98, 472-473.	0.5	0
162	Telomere Length, Cardiovascular Risk and the Discrepancy Between Baseline and Post-Transplant Renal Allograft Histology Transplantation, 2014, 98, 473.	0.5	0

#	Article	IF	Citations
163	The Impact of Renal Transplantation On Microbiota Derived Uremic Retention Solutes Transplantation, 2014, 98, 577.	0.5	0
164	Proteinuria, Histology and Kidney-Allograft Survival Transplantation, 2014, 98, 78-79.	0.5	0
165	A Pivotal Circulating Antibody Panel for Pre-Transplant Prediction of FSGS Recurrence After Kidney Transplantation Transplantation, 2014, 98, 227.	0.5	0
166	Intrarenal Resistive Index after Renal Transplantation. New England Journal of Medicine, 2014, 370, 676-678.	13.9	8
167	Postimplantation X-ray parameters predict functional catheter problems in peritoneal dialysis. Kidney International, 2014, 86, 1001-1006.	2.6	13
168	A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Science Translational Medicine, 2014, 6, 256ra136.	5.8	172
169	Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenetics and Genomics, 2014, 24, 597-606.	0.7	44
170	The Histology of Kidney Transplant Failure. Transplantation, 2014, 98, 427-435.	0.5	124
171	The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney International, 2014, 85, 636-640.	2.6	106
172	Pretransplant identification of acute rejection risk following kidney transplantation. Transplant International, 2014, 27, 129-138.	0.8	59
173	Time course of asymmetric dimethylarginine and symmetric dimethylarginine levels after successful renal transplantation. Nephrology Dialysis Transplantation, 2014, 29, 1965-1972.	0.4	10
174	Aortic calcifications and arterial stiffness as predictors of cardiovascular events in incident renal transplant recipients. Transplant International, 2013, 26, 973-981.	0.8	36
175	Chronic Histological Damage in Early Indication Biopsies Is an Independent Risk Factor for Late Renal Allograft Failure. American Journal of Transplantation, 2013, 13, 86-99.	2.6	56
176	Combined Kidney and Intestinal Transplantation in Patients With Enteric Hyperoxaluria Secondary to Short Bowel Syndrome. American Journal of Transplantation, 2013, 13, 1910-1914.	2.6	19
177	Intrarenal Resistive Index after Renal Transplantation. New England Journal of Medicine, 2013, 369, 1797-1806.	13.9	185
178	POST-STREPTOCOCCAL GLOMERULONEPHRITIS: NOT AN EXTINCT DISEASE!. Acta Clinica Belgica, 2013, 68, 215-217.	0.5	2
179	A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. Journal of Experimental Medicine, 2013, 210, 2205-2221.	4.2	201
180	Renal Clearance and Intestinal Generation of p-Cresyl Sulfate and Indoxyl Sulfate in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1508-1514.	2.2	93

#	Article	IF	CITATIONS
181	The Predictive Value of Kidney Allograft Baseline Biopsies for Long-Term Graft Survival. Journal of the American Society of Nephrology: JASN, 2013, 24, 1913-1923.	3.0	83
182	The Clinical Impact of Humoral Immunity in Pediatric Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2013, 24, 655-664.	3.0	56
183	Reasons for dose reduction of mycophenolate mofetil during the first year after renal transplantation and its impact on graft outcome. Transplant International, 2013, 26, 813-821.	0.8	51
184	Looking Back to Evaluate the Causes of Graft Loss? A Response to Dr. Halloran and Dr. Sellares. American Journal of Transplantation, 2013, 13, 1933-1934.	2.6	2
185	Completeness and Satisfaction with the Education and Information Received by Patients Immediately after Kidney Transplant: A Mixed-Models Study. Progress in Transplantation, 2013, 23, 12-22.	0.4	20
186	Urinary Connective Tissue Growth Factor Is Associated with Human Renal Allograft Fibrogenesis. Transplantation, 2013, 96, 494-500.	0.5	12
187	suPAR and FSGS. Transplantation, 2013, 96, 368-369.	0.5	8
188	Non-HLA Antibodies to Immunogenic Epitopes Predict the Evolution of Chronic Renal Allograft Injury. Journal of the American Society of Nephrology: JASN, 2012, 23, 750-763.	3.0	87
189	Renal Cell Carcinoma in the Allograft: What Is the Role of Polyomavirus. Case Reports in Nephrology and Urology, 2012, 2, 125-134.	1.5	20
190	Transplantation - clinical I. Nephrology Dialysis Transplantation, 2012, 27, ii304-ii316.	0.4	2
191	Stanniocalcin Supports the Functional Adaptation of Adult-Sized Kidneys Transplanted Into the Pediatric Recipients. Transplantation, 2012, 93, 1130-1135.	0.5	2
192	Cardiovascular complications in CKD 5D. Nephrology Dialysis Transplantation, 2012, 27, ii227-ii251.	0.4	0
193	Cluster Analysis Shows that Chronic Damage in Early Indication Biopsies Predicts Long-Term Graft Survival, While Early Active Inflammation Does Not. Transplantation, 2012, 94, 20.	0.5	0
194	Cluster Analysis Shows the Multifaceted Aspects of Microcirculation Inflammation and Chronic Antibody-Mediated Rejection in Early Indication Biopsies of Renal Allografts. Transplantation, 2012, 94, 20.	0.5	0
195	Recipients' Smoking Habits and Death-Censored Renal Allograft Survival. Transplantation, 2012, 94, 24.	0.5	0
196	Not All Histological Damage in Baseline Biopsies Is Deleterious for Renal Allograft Survival. Transplantation, 2012, 94, 120.	0.5	0
197	Not All Histological Damage in Baseline Biopsies Is Deleterious for Renal Allograft Survival. Transplantation, 2012, 94, 1042.	0.5	0
198	Specific miRNA's and their Downstream Targets Are Associated with Acute Rejection in Pediatric Renal Allografts. Transplantation, 2012, 94, 116.	0.5	0

#	Article	IF	Citations
199	A Peripheral Blood Diagnostic Test for Acute Rejection in Renal Transplantation. American Journal of Transplantation, 2012, 12, 2710-2718.	2.6	124
200	The Bumpy Road of Genomic Medicine in Transplantation. Transplantation, 2012, 93, 578-579.	0.5	3
201	Subclinical Inflammation and Chronic Renal Allograft Injury in a Randomized Trial on Steroid Avoidance in Pediatric Kidney Transplantation. American Journal of Transplantation, 2012, 12, 2730-2743.	2.6	44
202	Complete Steroid Avoidance Is Effective and Safe in Children With Renal Transplants: A Multicenter Randomized Trial With Three-Year Follow-Up. American Journal of Transplantation, 2012, 12, 2719-2729.	2.6	141
203	Organ transplantation after cardiac death. Lancet, The, 2011, 377, 203.	6.3	0
204	The Dual Role of Epithelial-to-Mesenchymal Transition in Chronic Allograft Injury in Pediatric Renal Transplantation. Transplantation, 2011, 92, 787-795.	0.5	16
205	Switching From Calcineurin Inhibitors to Mammalian Target of Rapamycin Inhibitorsâ€"Finally Caught the Right Wave?. Transplantation, 2011, 92, 728-730.	0.5	5
206	Expression of CYP3A5 and P-glycoprotein in Renal Allografts With Histological Signs of Calcineurin Inhibitor Nephrotoxicity. Transplantation, 2011, 91, 1098-1102.	0.5	37
207	Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes. Kidney International, 2011, 80, 1364-1376.	2.6	96
208	The P450 oxidoreductase <i>*28</i> SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics, 2011, 12, 1281-1291.	0.6	116
209	Replicative senescence in kidney aging, renal disease, and renal transplantation. Discovery Medicine, 2011, 11, 65-75.	0.5	36
210	Monitoring Calcineurin Inhibitor Therapy: Localizing the Moving Target. Transplantation, 2010, 89, 1308-1309.	0.5	7
211	Tacrolimus Dose Requirements and CYP3A5 Genotype and the Development of Calcineurin Inhibitor-Associated Nephrotoxicity in Renal Allograft Recipients. Therapeutic Drug Monitoring, 2010, 32, 394-404.	1.0	103
212	A prospective, open-label, observational clinical cohort study of the association between delayed renal allograft function, tacrolimus exposure, and CYP3A5 genotype in adult recipients. Clinical Therapeutics, 2010, 32, 2012-2023.	1.1	40
213	Harnessing the diversity of the human Tâ€cell repertoire: A monitoring tool for transplantation tolerance?. European Journal of Immunology, 2010, 40, 2986-2989.	1.6	7
214	Standardizing resistive indices in healthy pediatric transplant recipients of adult-sized kidneys. Pediatric Transplantation, 2010, 14, 126-131.	0.5	16
215	DELAYED GRAFT FUNCTION (DGF) AFFECTS EARLY TACROLIMUS DISPOSITION IN RENAL ALLOGRAFT RECIPIENTS: A POSSIBLE LINK TO POSTTRANSPLANTATION DIABETES MELLITUS (PTDM) Transplantation, 2010, 90, 345.	0.5	O
216	Molecular diagnostics in transplantation. Nature Reviews Nephrology, 2010, 6, 614-628.	4.1	80

#	Article	IF	Citations
217	Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and "antibodyome―measures. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4148-4153.	3.3	98
218	Expression of Complement Components Differs Between Kidney Allografts from Living and Deceased Donors. Journal of the American Society of Nephrology: JASN, 2009, 20, 1839-1851.	3.0	121
219	Calcium Metabolism in the Early Posttransplantation Period. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 665-672.	2.2	72
220	Donor Age and Renal P-Glycoprotein Expression Associate with Chronic Histological Damage in Renal Allografts. Journal of the American Society of Nephrology: JASN, 2009, 20, 2468-2480.	3.0	126
221	Steroid-Free Immunosuppression Since 1999: 129 Pediatric Renal Transplants with Sustained Graft and Patient Benefits. American Journal of Transplantation, 2009, 9, 1362-1372.	2.6	83
222	Localization, Etiology and Impact of Calcium Phosphate Deposits in Renal Allografts. American Journal of Transplantation, 2009, 9, 2470-2478.	2.6	46
223	Balancing Efficacy and Toxicity of Kidney Transplant Immunosuppression. Transplantation Proceedings, 2009, 41, 3393-3395.	0.3	17
224	Calcineurin Inhibitor Nephrotoxicity. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 481-508.	2.2	1,178
225	New Insights Into the Pharmacokinetics and Pharmacodynamics of the Calcineurin Inhibitors and Mycophenolic Acid: Possible Consequences for Therapeutic Drug Monitoring in Solid Organ Transplantation. Therapeutic Drug Monitoring, 2009, 31, 416-435.	1.0	146
226	Stability of mycophenolic acid and glucuronide metabolites in human plasma and the impact of deproteinization methodology. Clinica Chimica Acta, 2008, 389, 87-92.	0.5	32
227	Current target ranges of mycophenolic acid exposure and drug-related adverse events: A 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clinical Therapeutics, 2008, 30, 673-683.	1.1	100
228	Recovery of Hyperphosphatoninism and Renal Phosphorus Wasting One Year after Successful Renal Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 1829-1836.	2.2	124
229	Interference of globin genes with biomarker discovery for allograft rejection in peripheral blood samples. Physiological Genomics, 2008, 32, 190-197.	1.0	43
230	Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenetics and Genomics, 2008, 18, 861-868.	0.7	72
231	INTEGRATIVE GENOMICS TO IDENTIFY NON-HLA ALLOGENIC KIDNEY-SPECIFIC TARGETS AFTER KIDNEY TRANSPLANTATION. Transplantation, 2008, 86, 13.	0.5	0
232	Maturation of Dose-Corrected Tacrolimus Predose Trough Levels in Pediatric Kidney Allograft Recipients. Transplantation, 2008, 85, 1139-1145.	0.5	38
233	A PROTOCOL BIOPSY ANALYSIS FROM AN NIH MULTICENTER PEDIATRIC RENAL TRANSPLANT TRIAL REVEALS NO ADVERSE EFFECT OF STEROID AVOIDANCE ON THE HISTOLOGICAL EVOLUTION OF CHRONIC GRAFT INJURY. Transplantation, 2008, 86, 18.	0.5	1
234	Looking Into the Crystal Chip: Can Microarrays Predict Graft Function?. Transplantation, 2008, 85, 499-500.	0.5	4

#	Article	IF	Citations
235	Subclinical Peritubular Capillaritis at 3 Months Is Associated With Chronic Rejection at 1 Year. Transplantation, 2007, 83, 1416-1422.	0.5	70
236	The Impact of Renal Allograft Function on Exposure and Elimination of Mycophenolic Acid (MPA) and Its Metabolite MPA 7-O-glucuronide. Transplantation, 2007, 84, 362-373.	0.5	52
237	CYP3A5 and CYP3A4 but not MDR1 Single-nucleotide Polymorphisms Determine Long-term Tacrolimus Disposition and Drug-related Nephrotoxicity in Renal Recipients. Clinical Pharmacology and Therapeutics, 2007, 82, 711-725.	2.3	192
238	Effects of gastric emptying on oral mycophenolic acid pharmacokinetics in stable renal allograft recipients. British Journal of Clinical Pharmacology, 2007, 63, 541-547.	1.1	22
239	Tertiary ?Hyperphosphatoninism? Accentuates Hypophosphatemia and Suppresses Calcitriol Levels in Renal Transplant Recipients. American Journal of Transplantation, 2007, 7, 1193-1200.	2.6	143
240	Tacrolimus Exposure and Evolution of Renal Allograft Histology in the First Year After Transplantation. American Journal of Transplantation, 2007, 7, 2114-2123.	2.6	82
241	The Evolution of Nonimmune Histological Injury and Its Clinical Relevance in Adult-Sized Kidney Grafts in Pediatric Recipients. American Journal of Transplantation, 2007, 7, 2505-2515.	2.6	69
242	Multidrug Resistance Protein 2 Genetic Polymorphisms Influence Mycophenolic Acid Exposure in Renal Allograft Recipients. Transplantation, 2006, 82, 1074-1084.	0.5	187
243	Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: Implications for drug exposure in renal allograft recipients. Clinical Pharmacology and Therapeutics, 2006, 80, 509-521.	2.3	73
244	Drug interaction between mycophenolate mofetil and rifampin: Possible induction of uridine diphosphate-glucuronosyltransferase. Clinical Pharmacology and Therapeutics, 2005, 78, 81-88.	2.3	71
245	The impact of uridine diphosphate–glucuronosyltransferase 1A9 () gene promoter region single-nucleotide polymorphisms and on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clinical Pharmacology and Therapeutics, 2005, 78, 351-361.	2.3	171
246	Bartter's and Gitelman's Syndromes: From Gene to Clinic. Nephron Physiology, 2004, 96, p65-p78.	1.5	117
247	Can sonography diagnose acute colonic diverticulitis in patients with acute intestinal inflammation? A prospective study. Journal of Clinical Ultrasound, 1989, 17, 661-666.	0.4	79
248	Thyroid function in patients with hyperemesis gravidarum. American Journal of Obstetrics and Gynecology, 1982, 143, 922-926.	0.7	138
249	The Effect of Plasma Exchange on Synovitis in Rheumatoid Arthritis. Scandinavian Journal of Rheumatology, 1981, 10, 273-279.	0.6	9
250	A joint transition model for evaluating eGFR as biomarker for rejection after kidney transplantation. Statistical Modelling, 0, , 1471082X2110486.	0.5	0
251	Proposed Definitions of T Cell-Mediated Rejection and Tubulointerstitial Inflammation as Clinical Trial Endpoints in Kidney Transplantation. Transplant International, 0, 35, .	0.8	10
252	Evolution of the Definition of Rejection in Kidney Transplantation and Its Use as an Endpoint in Clinical Trials. Transplant International, 0, 35, .	0.8	10

#	Article	IF	CITATIONS
253	Allograft Function as Endpoint for Clinical Trials in Kidney Transplantation. Transplant International, 0, 35, .	0.8	9
254	Surrogate Endpoints for Late Kidney Transplantation Failure. Transplant International, 0, 35, .	0.8	18
255	Rationale for Surrogate Endpoints and Conditional Marketing Authorization of New Therapies for Kidney Transplantation. Transplant International, 0, 35, .	0.8	8
256	Proposed Definitions of Antibody-Mediated Rejection for Use as a Clinical Trial Endpoint in Kidney Transplantation. Transplant International, 0, 35, .	0.8	6
257	Alloimmune Risk Stratification for Kidney Transplant Rejection. Transplant International, 0, 35, .	0.8	10