
Boris Novakovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrative genomics approach identifies KDM4 as a modulator of trained immunity. European Journal of Immunology, 2022, 52, 431-446.	2.9	22
2	Gender-affirming hormone therapy induces specific DNA methylation changes in blood. Clinical Epigenetics, 2022, 14, 24.	4.1	17
3	Triiodothyronine (T3) Induces Limited Transcriptional and DNA Methylation Reprogramming in Human Monocytes. Biomedicines, 2022, 10, 608.	3.2	2
4	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	14.5	274
5	Epigenetic programming underpins B ell dysfunction in peanut and multiâ€food allergy. Clinical and Translational Immunology, 2021, 10, e1324.	3.8	13
6	Glutathione Metabolism Contributes to the Induction of Trained Immunity. Cells, 2021, 10, 971.	4.1	20
7	Association of medically assisted reproduction with offspring cord blood DNA methylation across cohorts. Human Reproduction, 2021, 36, 2403-2413.	0.9	17
8	Lysine methyltransferase G9a is an important modulator of trained immunity. Clinical and Translational Immunology, 2021, 10, e1253.	3.8	25
9	Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
10	oxLDL-Induced Trained Immunity Is Dependent on Mitochondrial Metabolic Reprogramming. Immunometabolism, 2021, 3, e210025.	6.0	7
11	Transcriptomic Remodelling of Fetal Endothelial Cells During Establishment of Inflammatory Memory. Frontiers in Immunology, 2021, 12, 757393.	4.8	3
12	The role of Tollâ€like receptor 10 in modulation of trained immunity. Immunology, 2020, 159, 289-297.	4.4	28
13	The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics, 2020, 15, 555-593.	2.7	33
14	Determinants of placental leptin receptor gene expression and association with measures at birth. Placenta, 2020, 100, 89-95.	1.5	5
15	BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils. Cell Reports, 2020, 33, 108387.	6.4	152
16	β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Reports, 2020, 31, 107634.	6.4	147
17	A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. IScience, 2020, 23, 101171.	4.1	18
18	Sex matters: XIST and DDX3Y gene expression as a tool to determine fetal sex in human first trimester placenta. Placenta, 2020, 97, 68-70.	1.5	13

#	Article	IF	CITATIONS
19	Maternal Obesity Alters Placental Cell Cycle Regulators in the First Trimester of Human Pregnancy: New Insights for BRCA1. International Journal of Molecular Sciences, 2020, 21, 468.	4.1	12
20	Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. Journal of Molecular Medicine, 2020, 98, 819-831.	3.9	59
21	A High-Fat Diet Increases Influenza A Virus-Associated Cardiovascular Damage. Journal of Infectious Diseases, 2020, 222, 820-831.	4.0	21
22	Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Frontiers in Immunology, 2020, 11, 604000.	4.8	124
23	Circadian rhythm influences induction of trained immunity by BCG vaccination. Journal of Clinical Investigation, 2020, 130, 5603-5617.	8.2	95
24	Hyper-Inflammatory Monocyte Activation Following Endotoxin Exposure in Food Allergic Infants. Frontiers in Immunology, 2020, 11, 567981.	4.8	11
25	Long-Lasting Transcriptional Changes in Circulating Monocytes of Acute Q Fever Patients. Open Forum Infectious Diseases, 2019, 6, .	0.9	5
26	Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genetics, 2019, 15, e1008236.	3.5	38
27	Early-life determinants of hypoxia-inducible factor 3A geneÂ(HIF3A) methylation: a birth cohort study. Clinical Epigenetics, 2019, 11, 96.	4.1	15
28	Intrauterine programming of obesity and type 2 diabetes. Diabetologia, 2019, 62, 1789-1801.	6.3	167
29	Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 2019, 10, 3922.	12.8	94
30	Micromanaging human placental function: differential microRNA expression in feto-placental endothelial cells of gestational diabetes pregnancies. Clinical Science, 2019, 133, 315-319.	4.3	4
31	Diabetes in pregnancy and epigenetic mechanisms—how the first 9 months from conception might affect the child's epigenome and later risk of disease. Lancet Diabetes and Endocrinology,the, 2019, 7, 796-806.	11.4	46
32	Treatment with Statins Does Not Revert Trained Immunity in Patients with Familial Hypercholesterolemia. Cell Metabolism, 2019, 30, 1-2.	16.2	130
33	A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome. Journal of Translational Medicine, 2019, 17, 157.	4.4	17
34	Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages. Scientific Reports, 2019, 9, 2772.	3.3	27
35	Innate Immune Memory in Paediatric Food Allergy. Journal of Allergy and Clinical Immunology, 2019, 143, AB431.	2.9	0
36	Inhibition of Histone Demethylases LSD1 and UTX Regulates ERα Signaling in Breast Cancer. Cancers, 2019, 11, 2027.	3.7	34

#	Article	IF	CITATIONS
37	The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism, 2019, 29, 211-220.e5.	16.2	232
38	Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell, 2018, 172, 135-146.e9.	28.9	485
39	BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host and Microbe, 2018, 23, 89-100.e5.	11.0	860
40	The Heterologous Effects of Bacillus Calmette-Guérin (BCG) Vaccine and Trained Innate Immunity. , 2018, , 71-90.		8
41	Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes. Diabetologia, 2018, 61, 2398-2411.	6.3	33
42	Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia. FASEB Journal, 2017, 31, 2380-2392.	0.5	21
43	Uric acid priming in human monocytes is driven by the AKT–PRAS40 autophagy pathway. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5485-5490.	7.1	114
44	We Can Still Be Friends: IFN-Î ³ Breaks Up Macrophage Enhancers. Immunity, 2017, 47, 209-211.	14.3	2
45	DNA methylation of amino acid transporter genes in the human placenta. Placenta, 2017, 60, 64-73.	1.5	20
46	Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation. Scientific Reports, 2017, 7, 4523.	3.3	18
47	I Remember You: Epigenetic Priming in Epithelial Stem Cells. Immunity, 2017, 47, 1019-1021.	14.3	12
48	The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Translational Psychiatry, 2016, 6, e765-e765.	4.8	61
49	DNA methylation mediated up-regulation of <i>TERRA</i> non-coding RNA is coincident with elongated telomeres in the human placenta. Molecular Human Reproduction, 2016, 22, 791-799.	2.8	28
50	Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism, 2016, 24, 807-819.	16.2	584
51	β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell, 2016, 167, 1354-1368.e14.	28.9	467
52	Low Birth Weight in MZ Twins Discordant for Birth Weight is Associated with Shorter Telomere Length and lower IQ, but not Anxiety/Depression in Later Life. Twin Research and Human Genetics, 2015, 18, 198-209.	0.6	17
53	Epigenetic regulation of human placental function and pregnancy outcome: considerations for causal inference. American Journal of Obstetrics and Gynecology, 2015, 213, S182-S196.	1.3	94
54	Postnatal stability, tissue, and time specific effects of <i>AHRR</i> methylation change in response to maternal smoking in pregnancy. Epigenetics, 2014, 9, 377-386.	2.7	118

#	Article	IF	CITATIONS
55	Assessing global and gene specific DNA methylation in anorexia nervosa: A pilot study. International Journal of Eating Disorders, 2014, 47, 206-210.	4.0	28
56	Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence?. Acta Obstetricia Et Gynecologica Scandinavica, 2014, 93, 1090-1098.	2.8	55
57	Human active X-specific DNA methylation events showing stability across time and tissues. European Journal of Human Genetics, 2014, 22, 1376-1381.	2.8	19
58	Association of maternal and nutrient supply line factors with DNA methylation at the imprintedIGF2/H19locus in multiple tissues of newborn twins. Epigenetics, 2013, 8, 1069-1079.	2.7	40
59	Glucose as a fetal nutrient: dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation. Journal of Nutritional Biochemistry, 2013, 24, 282-288.	4.2	50
60	The importance of the intrauterine environment in shaping the human neonatal epigenome. Epigenomics, 2013, 5, 1-4.	2.1	19
61	The Peri/Postnatal Epigenetic Twins Study (PETS). Twin Research and Human Genetics, 2013, 16, 13-20.	0.6	50
62	Placental pseudo-malignancy from a DNA methylation perspective: unanswered questions and future directions. Frontiers in Genetics, 2013, 4, 285.	2.3	40
63	Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. American Journal of Clinical Nutrition, 2012, 96, 188-195.	4.7	59
64	Cohort Profile: The Peri/post-natal Epigenetic Twins Study. International Journal of Epidemiology, 2012, 41, 55-61.	1.9	48
65	The ever growing complexity of placental epigenetics – Role in adverse pregnancy outcomes and fetal programming. Placenta, 2012, 33, 959-970.	1.5	107
66	Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Research, 2012, 22, 1395-1406.	5.5	246
67	Reduced placental FOXP3 associated with subsequent infant allergic disease. Journal of Allergy and Clinical Immunology, 2011, 128, 886-887.e5.	2.9	20
68	Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics, 2011, 12, 529.	2.8	164
69	Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast functionâ€. Molecular Human Reproduction, 2011, 17, 344-353.	2.8	76
70	Distinct Patterns of Gene-Specific Methylation in Mammalian Placentas: Implications for Placental Evolution and Function. Placenta, 2010, 31, 259-268.	1.5	30
71	DNA Methylation-mediated Down-regulation of DNA Methyltransferase-1 (DNMT1) Is Coincident with, but Not Essential for, Global Hypomethylation in Human Placenta. Journal of Biological Chemistry, 2010, 285, 9583-9593.	3.4	83
72	DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human Molecular Genetics, 2010, 19, 4176-4188.	2.9	296

#	Article	IF	CITATIONS
73	DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics, 2010, 2, 627-638.	2.1	29
74	Placenta-specific Methylation of the Vitamin D 24-Hydroxylase Gene. Journal of Biological Chemistry, 2009, 284, 14838-14848.	3.4	218
75	Methylation of the adenomatous polyposis coli (APC) gene in human placenta and hypermethylation in choriocarcinoma cells. Cancer Letters, 2008, 268, 56-62.	7.2	66
76	Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Molecular Human Reproduction, 2008, 14, 547-554.	2.8	84