Lin Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087124/publications.pdf

Version: 2024-02-01

331670 361022 1,778 36 21 35 citations h-index g-index papers 37 37 37 2498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kr $ ilde{A}^{1}\!\!/\!4$ ppel-like factor 14 deletion in myeloid cells accelerates atherosclerotic lesion development. Cardiovascular Research, 2022, 118, 475-488.	3.8	15
2	RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II. Pharmacological Research, 2022, 178, 106183.	7.1	7
3	Suppression of Vascular Macrophage Activation by Nitro-Oleic Acid and its Implication for Abdominal Aortic Aneurysm Therapy. Cardiovascular Drugs and Therapy, 2021, 35, 939-951.	2.6	9
4	Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxidants and Redox Signaling, 2021, 34, 736-749.	5.4	38
5	Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovascular Research, 2021, 117, 1402-1416.	3.8	95
6	KLF11 protects against abdominal aortic aneurysm through inhibition of endothelial cell dysfunction. JCI Insight, 2021, 6, .	5.0	17
7	Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Reports, 2021, 36, 109420.	6.4	18
8	Inhibition of a Novel CLK1-THRAP3-PPARÎ ³ Axis Improves Insulin Sensitivity. Frontiers in Physiology, 2021, 12, 699578.	2.8	1
9	Regulatory variants in TCF7L2 are associated with thoracic aortic aneurysm. American Journal of Human Genetics, 2021, 108, 1578-1589.	6.2	17
10	Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. EBioMedicine, 2021, 74, 103725.	6.1	16
11	Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science Translational Medicine, 2020, 12, .	12.4	122
12	BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2494-2507.	2.4	31
13	Cyclodextrin Prevents Abdominal Aortic Aneurysm via Activation of Vascular Smooth Muscle Cell Transcription Factor EB. Circulation, 2020, 142, 483-498.	1.6	56
14	Editorial. Current Opinion in Lipidology, 2020, 31, 104-107.	2.7	4
15	Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1094-1109.	2.4	81
16	Revisiting Vascular Remodeling in the Single-Cell Transcriptome Era. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1896-1898.	2.4	1
17	Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen. Circulation, 2018, 138, 67-79.	1.6	77
18	Rapid estrogen receptor-α signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H330-H342.	3.2	12

#	Article	IF	CITATIONS
19	Sex differences in abdominal aortic aneurysms. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1137-H1152.	3.2	30
20	MitoNEET in Perivascular Adipose Tissue Prevents Arterial Stiffness in Aging Mice. Cardiovascular Drugs and Therapy, 2018, 32, 531-539.	2.6	19
21	Brown Adipose Tissue, Not Just a Heater. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 389-391.	2.4	13
22	MitoNEET in Perivascular Adipose Tissue Blunts Atherosclerosis under Mild Cold Condition in Mice. Frontiers in Physiology, 2017, 8, 1032.	2.8	24
23	Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy. PLoS ONE, 2016, 11, e0157372.	2.5	23
24	Transcriptional signatures of unfolded protein response implicate the limitation of animal models in pathophysiological studies. Environmental Disease, 2016, 1 , 24.	0.1	3
25	The Liver Clock Controls Cholesterol Homeostasis through Trib1 Protein-mediated Regulation of PCSK9/Low Density Lipoprotein Receptor (LDLR) Axis. Journal of Biological Chemistry, 2015, 290, 31003-31012.	3.4	31
26	Irisin: A myokine with locomotor activity. Neuroscience Letters, 2015, 595, 7-11.	2.1	34
27	A Diet-Sensitive BAF60a-Mediated Pathway Links Hepatic Bile Acid Metabolism to Cholesterol Absorption and Atherosclerosis. Cell Reports, 2015, 13, 1658-1669.	6.4	26
28	Perivascular Adipose Tissue in Vascular Function and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1621-1630.	2.4	246
29	Paradoxical Roles of Perivascular Adipose Tissue in Atherosclerosis and Hypertension. Circulation Journal, 2013, 77, 11-18.	1.6	71
30	Electrophilic nitroâ€fatty acids inhibit vascular inflammation. FASEB Journal, 2013, 27, 920.10.	0.5	0
31	Loss of Perivascular Adipose Tissue on Peroxisome Proliferator–Activated Receptor-γ Deletion in Smooth Muscle Cells Impairs Intravascular Thermoregulation and Enhances Atherosclerosis. Circulation, 2012, 126, 1067-1078.	1.6	284
32	Identification and Mechanism of 10-Carbon Fatty Acid as Modulating Ligand of Peroxisome Proliferator-activated Receptors. Journal of Biological Chemistry, 2012, 287, 183-195.	3.4	119
33	Vascular Smooth Muscle Cell Peroxisome Proliferator–Activated Receptor-γ Mediates Pioglitazone-Reduced Vascular Lesion Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 352-359.	2.4	23
34	Vascular smooth muscle cell peroxisome proliferator-activated receptor- $\hat{1}^3$ deletion promotes abdominal aortic aneurysms. Journal of Vascular Surgery, 2010, 52, 984-993.	1.1	42
35	Vascular Smooth Muscle Cell–Selective Peroxisome Proliferator–Activated Receptor-γ Deletion Leads to Hypotension. Circulation, 2009, 119, 2161-2169.	1.6	65
36	Rad GTPase Deficiency Leads to Cardiac Hypertrophy. Circulation, 2007, 116, 2976-2983.	1.6	105