Cristina Prat-Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5086775/publications.pdf

Version: 2024-02-01

		218677	3	302126
54	1,539	26		39
papers	citations	h-index		g-index
			ľ	
	5.5			2200
55	55	55		2398
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Transitioning From Preclinical Evidence to Advanced Therapy Medicinal Product: A Spanish Experience. Frontiers in Cardiovascular Medicine, 2021, 8, 604434.	2.4	7
2	Extracellular vesicles from mesenchymal stromal cells combined with tissue engineering improve cardiac function, reduce fibrosis and modulate immune response in acute myocardial infarcted pigs. Cytotherapy, 2021, 23, S26-S27.	0.7	0
3	Our Journey Through Advanced Therapies to Reduce Post-Infarct Scarring. Stem Cell Reviews and Reports, 2021, 17, 1928-1930.	3.8	1
4	Wharton's Jelly Mesenchymal Stromal Cells and Derived Extracellular Vesicles as Post-Myocardial Infarction Therapeutic Toolkit: An Experienced View. Pharmaceutics, 2021, 13, 1336.	4.5	1
5	Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction. Cells, 2021, 10, 2571.	4.1	8
6	Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioactive Materials, 2021, 6, 3314-3327.	15.6	40
7	Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. Cells, 2021, 10, 3268.	4.1	1
8	First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic engineered tissue graft. EBioMedicine, 2020, 54, 102729.	6.1	27
9	Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Engineering - Part A, 2020, 26, 358-370.	3.1	33
10	Decellularized pericardial extracellular matrix: The preferred porous scaffold for regenerative medicine. Xenotransplantation, 2020, 27, e12580.	2.8	6
11	Unravelling the effects of mechanical physiological conditioning on cardiac adipose tissue-derived progenitor cells in vitro and in silico. Scientific Reports, 2018, 8, 499.	3.3	10
12	Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing. Scientific Reports, 2018, 8, 6708.	3.3	45
13	Extracellular vesicles do not contribute to higher circulating levels of soluble <scp>LRP</scp> 1 in idiopathic dilated cardiomyopathy. Journal of Cellular and Molecular Medicine, 2017, 21, 3000-3009.	3.6	9
14	Preclinical Safety Evaluation of Allogeneic Induced Pluripotent Stem Cell-Based Therapy in a Swine Model of Myocardial Infarction. Tissue Engineering - Part C: Methods, 2017, 23, 736-744.	2.1	10
15	Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach. Npj Systems Biology and Applications, 2017, 3, 12.	3.0	96
16	Noninvasive Assessment of an Engineered Bioactive Graft in Myocardial Infarction: Impact on Cardiac Function and Scar Healing. Stem Cells Translational Medicine, 2017, 6, 647-655.	3.3	28
17	Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction. Stem Cells Translational Medicine, 2017, 6, 970-981.	3.3	26
18	P4464An acellular myocardial scaffold optimal for cardiac recovery: proteomic, structural and mechanical characterization. European Heart Journal, 2017, 38, .	2.2	0

#	Article	IF	CITATIONS
19	A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function. JACC Basic To Translational Science, 2016, 1, 360-372.	4.1	20
20	Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Research and Therapy, 2016, 7, 94.	5.5	42
21	In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin'. Stem Cell Research and Therapy, 2015, 6, 248.	5.5	55
22	Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Research and Therapy, 2015, 6, 108.	5.5	41
23	Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2015, 4, 956-966.	3.3	39
24	Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E76-E83.	2.7	35
25	In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. American Journal of Translational Research (discontinued), 2015, 7, 558-73.	0.0	37
26	P510Obtention and characterization of acellular myocardial scaffold for cardiac tissue engineering. Cardiovascular Research, 2014, 103, S93.3-S93.	3.8	0
27	Physiological conditioning by electric field stimulation promotes cardiomyogenic gene expression in human cardiomyocyte progenitor cells. Stem Cell Research and Therapy, 2014, 5, 93.	5.5	23
28	Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 2014, 12, 137.	4.4	22
29	Online monitoring of myocardial bioprosthesis for cardiac repair. International Journal of Cardiology, 2014, 174, 654-661.	1.7	34
30	P779Constructing a new myocardial bioprosthesis for cardiac repair. Cardiovascular Research, 2014, 103, S143.2-S143.	3.8	0
31	Cardiac Tissue Engineering and the Bioartificial Heart. Revista Espanola De Cardiologia (English Ed), 2013, 66, 391-399.	0.6	39
32	Cardiac adipose tissue: A new frontier for cardiac regeneration?. International Journal of Cardiology, 2013, 167, 22-25.	1.7	25
33	IngenierÃa tisular cardiaca y corazón bioartificial. Revista Espanola De Cardiologia, 2013, 66, 391-399.	1.2	45
34	New insights into lipid raft function regulating myocardial vascularization competency in human idiopathic dilated cardiomyopathy. Atherosclerosis, 2013, 230, 354-364.	0.8	7
35	Post-infarction scar coverage using a pericardial-derived vascular adipose flap. Pre-clinical results. International Journal of Cardiology, 2013, 166, 469-474.	1.7	23
36	Effect of a cell-based bioactive smart patch after myocardial infarction in swine. European Heart Journal, 2013, 34, P1469-P1469.	2.2	0

#	Article	IF	CITATIONS
37	Identification of Temporal and Region-Specific Myocardial Gene Expression Patterns in Response to Infarction in Swine. PLoS ONE, 2013, 8, e54785.	2.5	32
38	Myocardial bioprosthesis: Mimicking nature. Drugs of the Future, 2013, 38, 475.	0.1	3
39	Towards on line monitoring the evolution of the myocardium infarction scar with an implantable electrical impedance spectrum monitoring system., 2012, 2012, 3223-6.		4
40	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Promote Vascular Growth In Vivo. PLoS ONE, 2012, 7, e49447.	2.5	70
41	Transposition of a pericardial-derived vascular adipose flap for myocardial salvage after infarct. Cardiovascular Research, 2011, 91, 659-667.	3.8	34
42	Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. European Heart Journal, 2011, 32, 721-729.	2.2	67
43	Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Research in Cardiology, 2010, 105, 419-430.	5.9	41
44	Effects of Adipose Tissue-Derived Stem Cell Therapy After Myocardial Infarction: Impact of the Route of Administration. Journal of Cardiac Failure, 2010, 16, 357-366.	1.7	77
45	Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 2010, 49, 771-780.	1.9	104
46	Hemosiderin Deposits Confounds Tracking of Iron-Oxide-Labeled Stem Cells: An Experimental Study. Transplantation Proceedings, 2008, 40, 3619-3622.	0.6	14
47	Idiopathic dilated cardiomyopathy exhibits defective vascularization and vessel formation. European Journal of Heart Failure, 2007, 9, 995-1002.	7.1	51
48	Reply: Does the adenosine A2A receptor stimulate the ryanodine receptor?. Cardiovascular Research, 2007, 73, 249-250.	3.8	2
49	Umbilical Cord Blood-Derived Stem Cells Spontaneously Express Cardiomyogenic Traits. Transplantation Proceedings, 2007, 39, 2434-2437.	0.6	41
50	Chimerism and microchimerism of the human heart: evidence for cardiac regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S40-S45.	3.3	26
51	FGF-4 increases <i>in vitro</i> expansion rate of human adult bone marrow-derived mesenchymal stem cells. Growth Factors, 2007, 25, 71-76.	1.7	47
52	The proarrhythmic antihistaminic drug terfenadine increases spontaneous calcium release in human atrial myocytes. European Journal of Pharmacology, 2006, 553, 215-221.	3.5	29
53	Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovascular Research, 2006, 72, 292-302.	3.8	62
54	Materials for cardiac tissue engineering. , 0, , 533-550.		О