
Roberto Senesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5086297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of momentum distribution of lightatoms and molecules in condensed matter systems using inelastic neutron scattering. Advances in Physics, 2005, 54, 377-469.	14.4	219
2	Research opportunities with compact accelerator-driven neutron sources. Physics Reports, 2016, 654, 1-58.	25.6	91
3	The instrument suite of the European Spallation Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 957, 163402.	1.6	90
4	Excess of Proton Mean Kinetic Energy in Supercooled Water. Physical Review Letters, 2008, 100, 127802.	7.8	84
5	Electron-volt neutron spectroscopy: beyond fundamental systems. Advances in Physics, 2017, 66, 1-73.	14.4	81
6	Proton Momentum Distribution of Liquid Water from Room Temperature to the Supercritical Phase. Physical Review Letters, 2008, 100, 177801.	7.8	75
7	VESUVIO: a novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility. Physica B: Condensed Matter, 2000, 276-278, 200-201.	2.7	72
8	Proton quantum coherence observed in water confined in silica nanopores. Journal of Chemical Physics, 2007, 127, 154501.	3.0	68
9	Direct Measurement of Competing Quantum Effects on the Kinetic Energy of Heavy Water upon Melting. Journal of Physical Chemistry Letters, 2013, 4, 3251-3256.	4.6	64
10	Multiple scattering in deep inelastic neutron scattering: Monte Carlo simulations and experiments at the ISIS eVS inverse geometry spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 481, 454-463.	1.6	60
11	Membrane thickness and the mechanism of action of the short peptaibol trichogin GA IV. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1013-1024.	2.6	56
12	Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer. Measurement Science and Technology, 2017, 28, 095501.	2.6	55
13	Rigid-cage effects on the optical properties of the dye 3,3â€2-diethyloxadicarbocyanine incorporated in silica-gel glasses. Applied Physics Letters, 1997, 70, 2969-2971.	3.3	54
14	YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources. Review of Scientific Instruments, 2004, 75, 4880-4890.	1.3	52
15	Electron volt neutron spectrometers. Physics Reports, 2011, 508, 45-90.	25.6	48
16	Proton Momentum Distribution in a Protein Hydration Shell. Physical Review Letters, 2007, 98, 138102.	7.8	47
17	Single particle dynamics in fluid and solid hydrogen sulphide: An inelastic neutron scattering study. Journal of Chemical Physics, 2001, 114, 387.	3.0	46
18	Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 552, 463-476.	1.6	44

#	Article	IF	CITATIONS
19	Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration. Review of Scientific Instruments, 2006, 77, 095103.	1.3	44
20	Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data. Journal of Chemical Physics, 2012, 136, 024504.	3.0	43
21	Cadmium–Zinc–Telluride photon detector for epithermal neutron spectroscopy—pulse height response characterisation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 526, 477-492.	1.6	41
22	DINS measurements on VESUVIO in the Resonance Detector configuration: proton mean kinetic energy in water. Journal of Instrumentation, 2006, 1, P04001-P04001.	1.2	41
23	Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 481, 509-520.	1.6	39
24	A resonant detector for high-energy inelastic neutron scattering experiments. Applied Physics Letters, 2004, 85, 5454-5456.	3.3	39
25	Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 612, 143-148.	1.6	39
26	The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments. Journal of Chemical Physics, 2013, 139, 074504.	3.0	39
27	Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 497, 535-549.	1.6	38
28	Deep inelastic neutron scattering from orthorhombic ordered HCI: Short-time proton dynamics and anomalous neutron cross sections. Physical Review B, 2005, 72, .	3.2	38
29	CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer. Applied Physics A: Materials Science and Processing, 2004, 78, 903-913.	2.3	34
30	Temperature dependence of the zero point kinetic energy in ice and water above room temperature. Chemical Physics, 2013, 427, 111-116.	1.9	34
31	Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark. Journal of Physical Chemistry Letters, 2016, 7, 2216-2220.	4.6	33
32	Deep-Inelastic Neutron Scattering Determination of the Single-Particle Kinetic Energy in Solid and LiquidH3e. Physical Review Letters, 2001, 86, 4584-4587.	7.8	32
33	A combined INS and DINS study of proton quantum dynamics of ice and water across the triple point and in the supercritical phase. Chemical Physics, 2013, 427, 106-110.	1.9	32
34	Dye-doped zirconia-based Ormosil planar waveguides: optical properties and surface morphology. Journal of Non-Crystalline Solids, 1999, 255, 193-198.	3.1	30
35	Interaction of single water molecules with silanols in mesoporous silica. Physical Chemistry Chemical Physics, 2011, 13, 6022.	2.8	30
36	Characterization of the background in epithermal neutron scattering measurements at pulsed neutron sources. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568, 826-838.	1.6	29

#	Article	IF	CITATIONS
37	Neutron resonance transmission imaging for 3D elemental mapping at the ISIS spallation neutron source. Journal of Analytical Atomic Spectrometry, 2015, 30, 745-750.	3.0	29
38	Evolution of Hydrogen Dynamics in Amorphous Ice with Density. Journal of Physical Chemistry Letters, 2015, 6, 2038-2042.	4.6	28
39	Quantum effects in water: proton kinetic energy maxima in stable and supercooled liquid. Brazilian Journal of Physics, 2009, 39, 318-321.	1.4	27
40	Changes in the Zero-Point Energy of the Protons as the Source of the Binding Energy of Water to <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>A</mml:mi></mml:math> -Phase DNA. Physical Review Letters, 2010, 105, 148101.	7.8	27
41	Soft confinement of water in graphene-oxide membranes. Carbon, 2016, 108, 199-203.	10.3	27
42	Atomic Quantum Dynamics in Materials Research. Experimental Methods in the Physical Sciences, 2017, , 403-457.	0.1	27
43	Resolution function in deep inelastic neutron scattering using the Foil Cycling Technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 570, 498-510.	1.6	25
44	VESUVIO—the double difference inverse geometry spectrometer at ISIS. Physica B: Condensed Matter, 2004, 350, E659-E662.	2.7	23
45	Aggregation States of Al̂²1–40, Al̂²1–42 and Al̂²p3–42 Amyloid Beta Peptides: A SANS Study. International Journal of Molecular Sciences, 2019, 20, 4126.	4.1	23
46	? detectors for Deep Inelastic Neutron Scattering in the 1-100 eV energy region. Applied Physics A: Materials Science and Processing, 2002, 74, s189-s190.	2.3	21
47	The resonant detector and its application to epithermal neutron spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529, 293-300.	1.6	21
48	Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges. Physical Chemistry Chemical Physics, 2015, 17, 31680-31684.	2.8	20
49	-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608, 121-124.	1.6	19
50	Measurements of gamma-ray background spectra at spallation neutron source beamlines. Journal of Analytical Atomic Spectrometry, 2014, 29, 1897-1903.	3.0	19
51	Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons. Journal of Instrumentation, 2016, 11, C03060-C03060.	1.2	19
52	First analysis of ancient burned human skeletal remains probed by neutron and optical vibrational spectroscopy. Science Advances, 2019, 5, eaaw1292.	10.3	19
53	Neutrons for Cultural Heritage—Techniques, Sensors, and Detection. Sensors, 2020, 20, 502.	3.8	19
54	VESUVIO+: The Current Testbed for a Next-generation Epithermal Neutron Spectrometer. Journal of Physics: Conference Series, 2018, 1021, 012026.	0.4	18

#	Article	IF	CITATIONS
55	DODCI molecules incorporated in sol–gel glasses: the interaction with the silica matrix. Chemical Physics Letters, 1998, 291, 167-172.	2.6	17
56	Egyptian metallic inks on textiles from the 15th century BCE unravelled by non-invasive techniques and chemometric analysis. Scientific Reports, 2019, 9, 7310.	3.3	17
57	Microscopic Structure in Liquid Hydrogen and Deuterium: An X-Ray Scattering Study. Journal of Low Temperature Physics, 2002, 129, 117-131.	1.4	16
58	Quantum Behavior of Water Protons in Protein Hydration Shell. Biophysical Journal, 2009, 96, 1939-1943.	0.5	16
59	Neutronic developments on TOSCA and VESPA: Progress to date. Physica B: Condensed Matter, 2019, 562, 107-111.	2.7	16
60	A nondestructive stratigraphic and radiographic neutron study of Lorenzo Ghiberti's reliefs from paradise and north doors of Florence baptistery. Journal of Applied Physics, 2009, 106, 074909.	2.5	15
61	Orthodontic archwire composition and phase analyses by neutron spectroscopy. Dental Materials Journal, 2017, 36, 282-288.	1.8	15
62	Composition―Nanostructure Steered Performance Predictions in Steel Wires. Nanomaterials, 2019, 9, 1119.	4.1	15
63	Extraction of the density of phonon states in LiH and NaH. Physica B: Condensed Matter, 2004, 350, E983-E986.	2.7	14
64	He4adsorbed in cylindrical silica nanopores: Effect of size on the single-atom mean kinetic energy. Physical Review B, 2007, 75, .	3.2	14
65	Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress. Reports on Progress in Physics, 2016, 79, 094301.	20.1	14
66	Compositional studies of functional orthodontic archwires using prompt-gamma activation analysis at a pulsed neutron source. Journal of Analytical Atomic Spectrometry, 2017, 32, 1420-1427.	3.0	14
67	A neutron study of sealed pottery from the grave-goods of Kha and Merit. Journal of Analytical Atomic Spectrometry, 2017, 32, 1342-1347.	3.0	14
68	Water structure in supercritical mixtures of water and rare gases. Journal of Chemical Physics, 2003, 118, 235-241.	3.0	13
69	The O–H stretching band in ice Ih derived via eV neutron spectroscopy on VESUVIO using the new very Iow angle detector bank. Applied Physics A: Materials Science and Processing, 2006, 83, 453-460.	2.3	13
70	Ground state proton dynamics in stable phases of water. Chemical Physics Letters, 2011, 518, 1-6.	2.6	12
71	Measurement of proton momentum distributions using a direct geometry instrument. Journal of Physics: Conference Series, 2014, 571, 012007.	0.4	12
72	Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source. AIP Advances, 2018, 8, .	1.3	12

#	Article	IF	CITATIONS
73	The onset of the tetrabonded structure in liquid water. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	12
74	Signatures of quantum behavior in the microscopic dynamics of liquid hydrogen and deuterium. Journal of Chemical Physics, 2005, 123, 114509.	3.0	11
75	Pietropaolo <i>et al.</i> Reply:. Physical Review Letters, 2009, 103, .	7.8	11
76	Pulsed neutron gamma-ray logging in archaeological site survey. Measurement Science and Technology, 2013, 24, 125903.	2.6	11
77	Egyptian Grave Goods of Kha and Merit Studied by Neutron and Gamma Techniques. Angewandte Chemie - International Edition, 2018, 57, 7375-7379.	13.8	11
78	Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations. Journal of Physical Chemistry Letters, 2020, 11, 9461-9467.	4.6	11
79	Single-particle mean kinetic energy in low-density supercritical 4 He. Europhysics Letters, 2000, 50, 202-208.	2.0	10
80	Kinetic energy of He atoms in liquid4Heâ `'3Hemixtures. Physical Review B, 2003, 68, .	3.2	10
81	Photon detectors for epithermal neutron scattering at high-ï‰ and low-q. Physica B: Condensed Matter, 2004, 350, E857-E859.	2.7	9
82	Development of the very low angle detector for epithermal neutron scattering at low momentum transfers. IEEE Transactions on Nuclear Science, 2005, 52, 1092-1097.	2.0	9
83	Mean kinetic energy of helium atoms in fluid3He and3He–4He mixtures. Journal of Physics Condensed Matter, 2006, 18, 5587-5596.	1.8	9
84	Neutron Compton scattering as a molecular characterization technique: A study onNaHF2. Physical Review B, 2007, 76, .	3.2	9
85	Direct kinetic energy extraction from neutron Compton profiles. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 661, 70-76.	1.6	9
86	Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice. Frontiers of Physics, 2018, 13, 1.	5.0	9
87	Optimization of detection strategies for epithermal neutron spectroscopy using photon-sensitive detectors. Review of Scientific Instruments, 2019, 90, 073901.	1.3	9
88	Constant-q data representation in Neutron Compton scattering on the VESUVIO spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 594, 244-252.	1.6	8
89	Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti's relief from the <i>Gates of Paradise</i> . Journal of Applied Physics, 2011, 109, 064908.	2.5	8
90	Characterization of Î ³ -ray background at IMAT beamline of ISIS Spallation Neutron Source. Journal of Instrumentation, 2017, 12, P08005-P08005.	1.2	8

#	Article	IF	CITATIONS
91	Cu-based alloys as a benchmark for T-PGAA quantitative analysis at spallation neutron sources. Journal of Analytical Atomic Spectrometry, 2020, 35, 331-340.	3.0	8
92	Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. Journal of Neural Engineering, 2020, 17, 036032.	3.5	8
93	Optical properties of dye-doped sol-gel glasses. Journal of Luminescence, 1997, 72-74, 475-477.	3.1	7
94	Assessment of a silicon detector for pulsed neutron scattering experiments. Physica B: Condensed Matter, 2004, 350, E853-E856.	2.7	7
95	Neutrons and music: Imaging investigation of ancient wind musical instruments. Nuclear Instruments & Methods in Physics Research B, 2014, 336, 63-69.	1.4	7
96	FLUKA simulations and benchmark measurements of the YAP(Ce) scintillators installed on the VESUVIO spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 969, 164012.	1.6	7
97	Thermal neutron cross sections of amino acids from average contributions of functional groups. Journal of Physics Condensed Matter, 2021, 33, 285901.	1.8	7
98	Comparison of Cadmium–Zinc–Telluride semiconductor and Yttrium–Aluminum–Perovskite scintillator as photon detectors for epithermal neutron spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 567, 337-340.	1.6	6
99	Texture and structure studies on marbles from Villa Adriana via neutron diffraction technique. Journal of Neutron Research, 2006, 14, 55-58.	1.1	6
100	VI Workshop in Electron Volt Neutron Spectroscopy: Frontiers and Horizons. Journal of Physics: Conference Series, 2014, 571, 011001.	0.4	6
101	Over the Horizon: Future Roles of Electron Volt Neutron Spectroscopy. Journal of Physics: Conference Series, 2014, 571, 012014.	0.4	6
102	Enhancement of counting statistics and noise reduction in the forward-scattering detectors on the VESUVIO spectrometer. Journal of Physics: Conference Series, 2018, 1055, 012008.	0.4	6
103	Gamma background characterization on VESUVIO: before and after the moderator upgrade. Journal of Physics: Conference Series, 2018, 1055, 012009.	0.4	6
104	MWCNT/rGO/natural rubber latex dispersions for innovative, piezo-resistive and cement-based composite sensors. Scientific Reports, 2021, 11, 18975.	3.3	6
105	Advances on detectors for low-angle scattering of epithermal neutrons. Measurement Science and Technology, 2008, 19, 047001.	2.6	5
106	Comment on "High-energy neutron scattering from hydrogen using a direct geometry spectrometer― Physical Review B, 2011, 84, .	3.2	5
107	From neutron Compton profiles to momentum distribution: Assessment of direct numerical determination. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 704, 36-39.	1.6	5
108	Self-grafting carbon nanotubes on polymers for stretchable electronics. European Physical Journal Plus, 2018, 133, 1.	2.6	5

#	Article	IF	CITATIONS
109	A Python Algorithm to Analyze Inelastic Neutron Scattering Spectra Based on the y-Scale Formalism. Journal of Chemical Theory and Computation, 2020, 16, 7671-7680.	5.3	5
110	The effective isotropy of the hydrogen local potential in biphenyl and other hydrocarbons. Journal of Chemical Physics, 2020, 153, 234306.	3.0	5
111	The neutron cross section of barite-enriched concrete for radioprotection shielding in the range 1 meV–1 keV. European Physical Journal Plus, 2021, 136, 1.	2.6	5
112	Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman Spectroscopies. Antioxidants, 2021, 10, 643.	5.1	5
113	Title is missing!. Journal of Low Temperature Physics, 2002, 126, 57-62.	1.4	4
114	The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 589, 296-303.	1.6	4
115	Discussion: Measurement and Instrumentation. Journal of Physics: Conference Series, 2014, 571, 012010.	0.4	4
116	High-energy neutrons characterization of a safety critical computing system. , 2017, , .		4
117	The road to a station for epithermal and thermal neutron analysis. Journal of Physics: Conference Series, 2018, 1055, 012017.	0.4	4
118	SANS study of Amyloid <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll" id="d1e303" altimg="si64.gif"><mml:msub><mml:mrow><mml:mi>î²</mml:mi></mml:mrow><mml:mrow><mml:mn>1Unfolded monomers in DMSO, multidimensional aggregates in water medium. Physica A: Statistical Mechanics and Its Applications, 2019, 517, 385-391.</mml:mn></mml:mrow></mml:msub></mml:math>	11:n 2∷6 < m	ml:mo>â^'
119	Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518, 259-260.	1.6	3
120	Development of new instrumentation for epithermal neutron scattering at very low angles. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 535, 121-125.	1.6	3
121	Development of the Very Low Angle Detector (VLAD) for detection of epithermal neutrons at low momentum transfers. Nuclear Physics, Section B, Proceedings Supplements, 2006, 150, 421-425.	0.4	3
122	Structure and Single Proton Dynamics of Bulk Supercooled Water. Journal of Molecular Liquids, 2007, 136, 236-240.	4.9	3
123	Localization of inclusions in multiple prompt gamma ray analysis: a feasibility study. Journal of Physics: Conference Series, 2013, 470, 012001.	0.4	3
124	Discussion: Theoretical Horizons and Calculation. Journal of Physics: Conference Series, 2014, 571, 012013.	0.4	3
125	A McStas simulation of the incident neutron beam on the VESUVIO spectrometer. Journal of Physics: Conference Series, 2018, 1055, 012014.	0.4	3
126	Absolute efficiency calibration of a coaxial HPGe detector for quantitative PGAA and T-PGAA. Journal of Physics: Conference Series, 2018, 1055, 012010.	0.4	3

#	Article	IF	CITATIONS
127	Validation of a new data-analysis software for multiple-peak analysis of γ spectra at ISIS pulsed Neutron and Muon Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 938, 51-55.	1.6	3
128	Sumerian Pottery Technology Studied Through Neutron Diffraction and Chemometrics at Abu Tbeirah (Iraq). Geosciences (Switzerland), 2019, 9, 74.	2.2	3
129	THE RESONANCE DETECTOR SPECTROMETER FOR NEUTRON SPECTROSCOPY IN THE EV ENERGY REGION. , 2003, , .		3
130	Microscopic structure of the hydrogen-xenon mixture. Physical Review E, 1997, 56, 2993-2999.	2.1	2
131	Recent developments of the e.VERDI project at ISIS. Physica B: Condensed Matter, 2004, 350, E837-E840.	2.7	2
132	VLAD for epithermal neutron scattering experiments at large energy transfers. Journal of Physics: Conference Series, 2006, 41, 451-459.	0.4	2
133	Investigation of high-energy inelastic neutron scattering from liquid water confined in silica xerogel. Physica B: Condensed Matter, 2006, 385-386, 1095-1097.	2.7	2
134	Deep inelastic neutron scattering on 207Pb and NaHF2 as a test of a detectors array on the VESUVIO spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 584, 377-382.	1.6	2
135	Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction. Materials Science Forum, 2011, 681, 522-526.	0.3	2
136	Applications of Compact Accelerator-driven Neutron Sources: An Updated Assessment from the Perspective of Materials Research in Italy. Physics Procedia, 2014, 60, 228-237.	1.2	2
137	Egyptian Grave Goods of Kha and Merit Studied by Neutron and Gamma Techniques. Angewandte Chemie, 2018, 130, 7497-7501.	2.0	2
138	Neutrons matter: VII international workshop on electron-Volt neutron spectroscopy – A preface to the workshop proceedings. Journal of Physics: Conference Series, 2018, 1055, 011001.	0.4	2
139	Setup and experimental results analysis of COTS Camera and SRAMs at the ISIS neutron facility. , 2018, , \cdot		2
140	Neutrons Matter – VII International Workshop on Electron-Volt Neutron Spectroscopy. Neutron News, 2018, 29, 4-6.	0.2	2
141	Neutron Diffraction and (n, \hat{I}^3)-Based Techniques for Cultural Heritage. , 2019, , 61-77.		2
142	Carbon Nanotube-Based Stretchable Hybrid Material Film for Electronic Devices and Applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 4549-4556.	0.9	2
143	Ultralow Power System-on-Chip SRAM Characterization by Alpha and Neutron Irradiation. IEEE Transactions on Nuclear Science, 2021, 68, 2598-2608.	2.0	2
144	Time-resolved prompt-gamma activation analysis at spallation neutron sources and applications to cultural heritage, security, and radiation protection. Physics Open, 2021, 7, 100073.	1.5	2

#	ARTICLE	IF	CITATIONS
145	Hydrogen Detection Limits and Instrument Sensitivity of High-Resolution Broadband Neutron Spectrometers. Analytical Chemistry, 2022, 94, 5023-5028.	6.5	2
146	Development of the very low angle detector for epithermal neutron scattering at low momentum transfers. , 0, , .		1
147	The role of the electronic degrees of freedom in neutron Compton scattering from molecular systems. Journal of Physics Condensed Matter, 2008, 20, 445225.	1.8	1
148	Neutron resonance capture analysis and chemometric tools: an integrated approach. Journal of Physics: Conference Series, 2018, 1055, 012005.	0.4	1
149	A complementary compact laser based neutron source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 323-326.	1.6	1
150	Hydrogen nuclear mean kinetic energy in water down the Mariana Trench: Competition of pressure and salinity. Journal of Chemical Physics, 2020, 153, 134306.	3.0	1
151	Chemometrics tools for Advanced Spectroscopic Analyses. Journal of Physics: Conference Series, 2020, 1548, 012030.	0.4	1
152	TECNOMUSE: a novel, RPC-based, muon tomography scanner for the control of container terminals. Journal of Physics: Conference Series, 2020, 1548, 012021.	0.4	1
153	Neutron irradiation of an ARM Cortex-M0 Core. , 2018, , .		1
154	Second-harmonic generation in PMMA films doped with organometallic complexes. Radiation Effects and Defects in Solids, 1999, 150, 237-242.	1.2	0
155	Molecular Spectroscopy Science Meeting—MSSM2016. Neutron News, 2017, 28, 15-16.	0.2	0
156	The neutron irradiation module at the European Spallation Source ESS. Journal of Physics: Conference Series, 2018, 1021, 012054.	0.4	0
157	Towards a compact Laser based Neutron source. Journal of Physics: Conference Series, 2018, 1021, 012011.	0.4	0
158	Effect of coating systems as a barrier to humidity for lutherie woods studied by neutron radiography. Journal of Cultural Heritage, 2020, 43, 255-260.	3.3	0
159	Neutronic Calculations for the Shielding Design of the VESPA Instrument at the European Spallation Source. Journal of Surface Investigation, 2020, 14, S190-S194.	0.5	0
160	Stretchable conductors made of single wall carbon nanotubes self-grafted on polymer films. Journal of Physics: Conference Series, 2020, 1548, 012023.	0.4	0
161	Towards Neutron Scattering Identification of Olive Oil's Antioxidant Properties. Neutron News, 0, , 1-2.	0.2	0