Jack Jack T Pronk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5085054/publications.pdf Version: 2024-02-01

260 papers	20,919 citations	8755 75 h-index	12597 132 g-index
271 all docs	271 docs citations	271 times ranked	13343 citing authors

LACK LACK T PRONK

#	Article	IF	CITATIONS
1	Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production. Synthetic and Systems Biotechnology, 2022, 7, 554-566.	3.7	21
2	Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of <i>Ogataea parapolymorpha</i> . FEMS Yeast Research, 2022, 22, .	2.3	2
3	Uncoupling growth and succinic acid production in an industrial <i>Saccharomyces cerevisiae</i> strain. Biotechnology and Bioengineering, 2021, 118, 1557-1567.	3.3	12
4	Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation pathways enables nitrate utilization by Saccharomyces cerevisiae. Metabolic Engineering, 2021, 65, 11-29.	7.0	10
5	Critical parameters and procedures for anaerobic cultivation of yeasts in bioreactors and anaerobic chambers. FEMS Yeast Research, 2021, 21, .	2.3	12
6	Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast. MBio, 2021, 12, e0096721.	4.1	11
7	A squalene–hopene cyclase in <i>Schizosaccharomyces japonicus</i> represents a eukaryotic adaptation to sterol-limited anaerobic environments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
8	Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth. Metabolic Engineering, 2021, 67, 347-364.	7.0	14
9	Engineering oxygen-independent biotin biosynthesis in Saccharomyces cerevisiae. Metabolic Engineering, 2021, 67, 88-103.	7.0	5
10	Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metabolic Engineering Communications, 2021, 13, e00183.	3.6	1
11	Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. Fungal Biology and Biotechnology, 2021, 8, 10.	5.1	9
12	Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO 2 levels. Biotechnology and Bioengineering, 2020, 117, 721-735.	3.3	15
13	Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
14	Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of <i>Ogataea parapolymorpha</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	7
15	Improving Industrially Relevant Phenotypic Traits by Engineering Chromosome Copy Number in Saccharomyces pastorianus. Frontiers in Genetics, 2020, 11, 518.	2.3	12
16	"Candidatus Galacturonibacter soehngenii―Shows Acetogenic Catabolism of Galacturonic Acid but Lacks a Canonical Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase Complex. Frontiers in Microbiology, 2020, 11, 63.	3.5	6
17	Vitamin requirements and biosynthesis in <i>Saccharomyces cerevisiae</i> . Yeast, 2020, 37, 283-304.	1.7	74
18	Exploiting the Diversity of Saccharomycotina Yeasts To Engineer Biotin-Independent Growth of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2020, 86, .	3.1	9

#	Article	IF	CITATIONS
19	Adaptive Laboratory Evolution and Reverse Engineering of Single-Vitamin Prototrophies in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2020, 86, .	3.1	18
20	Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids. FEMS Yeast Research, 2019, 19, .	2.3	21
21	Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2019, 85, .	3.1	12
22	Himalayan Saccharomyces eubayanus Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids. Applied and Environmental Microbiology, 2019, 85, .	3.1	21
23	Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 165-180.	7.0	70
24	Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Research, 2019, 19, .	2.3	23
25	Functional expression of a bacterial α-ketoglutarate dehydrogenase in the cytosol of Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 190-197.	7.0	6
26	Phenotype-Independent Isolation of Interspecies Saccharomyces Hybrids by Dual-Dye Fluorescent Staining and Fluorescence-Activated Cell Sorting. Frontiers in Microbiology, 2019, 10, 871.	3.5	8
27	Laboratory Evolution of a Saccharomyces cerevisiae × S. eubayanus Hybrid Under Simulated Lager-Brewing Conditions. Frontiers in Genetics, 2019, 10, 242.	2.3	35
28	In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genetics, 2019, 15, e1007853.	3.5	29
29	Allele-specific genome editing using CRISPR–Cas9 is associated with loss of heterozygosity in diploid yeast. Nucleic Acids Research, 2019, 47, 1362-1372.	14.5	32
30	A toolkit for rapid CRISPR- <i>Sp</i> Cas9 assisted construction of hexose-transport-deficient <i>Saccharomyces cerevisiae</i> strains. FEMS Yeast Research, 2019, 19, .	2.3	25
31	A Novel D-Galacturonate Fermentation Pathway in Lactobacillus suebicus Links Initial Reactions of the Galacturonate-Isomerase Route With the Phosphoketolase Pathway. Frontiers in Microbiology, 2019, 10, 3027.	3.5	14
32	Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Research, 2018, 18, .	2.3	75
33	The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 63.	6.2	29
34	Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Current Opinion in Biotechnology, 2018, 50, 47-56.	6.6	135
35	Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 121-133.	7.0	24
36	Evaluation of a novel cloud-based software platform for structured experiment design and linked data analytics. Scientific Data, 2018, 5, 180195.	5.3	10

#	Article	IF	CITATIONS
37	Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake. FEMS Yeast Research, 2018, 18, .	2.3	16
38	Selection of Pof-Saccharomyces eubayanus Variants for the Construction of S. cerevisiae × S. eubayanus Hybrids With Reduced 4-Vinyl Guaiacol Formation. Frontiers in Microbiology, 2018, 9, 1640.	3.5	25
39	Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains. FEMS Yeast Research, 2018, 19, .	2.3	6
40	Laboratory evolution and physiological analysis of <i>Saccharomyces cerevisiae</i> strains dependent on sucrose uptake via the <i>Phaseolus vulgaris</i> <scp>Suf1</scp> transporter. Yeast, 2018, 35, 639-652.	1.7	6
41	Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	2.3	42
42	Galacturonate Metabolism in Anaerobic Chemostat Enrichment Cultures: Combined Fermentation and Acetogenesis by the Dominant sp. nov. "Candidatus Galacturonibacter soehngenii― Applied and Environmental Microbiology, 2018, 84, .	3.1	16
43	Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces eubayanus CBS 12357T. Frontiers in Microbiology, 2018, 9, 1786.	3.5	47
44	Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Research, 2018, 18, .	2.3	33
45	Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnology for Biofuels, 2018, 11, 17.	6.2	57
46	Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2017, 10, 107.	6.2	33
47	Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Research, 2017, 17, .	2.3	140
48	Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations. Applied and Environmental Microbiology, 2017, 83, .	3.1	30
49	Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts. Applied and Environmental Microbiology, 2017, 83, .	3.1	61
50	Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Scientific Reports, 2017, 7, 46155.	3.3	61
51	A Simulator-Assisted Workshop for Teaching Chemostat Cultivation in Academic Classes on Microbial Physiology. Journal of Microbiology and Biology Education, 2017, 18, .	1.0	3
52	Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 231-242.	4.1	10
53	Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism. FEMS Yeast Research, 2017, 17, .	2.3	34
54	A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Research, 2017, 17, .	2.3	35

#	Article	IF	CITATIONS
55	Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Frontiers in Microbiology, 2017, 8, 1690.	3.5	36
56	Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol. MBio, 2016, 7, .	4.1	19
57	Pathway swapping: Toward modular engineering of essential cellular processes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15060-15065.	7.1	35
58	Alternative reactions at the interface of glycolysis and citric acid cycle in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fow017.	2.3	36
59	A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnology for Biofuels, 2016, 9, 173.	6.2	109
60	Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2016, 82, 4570-4583.	3.1	52
61	Replacement of the initial steps of ethanol metabolism in <i>Saccharomyces cerevisiae</i> by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Research, 2016, 16, fow006.	2.3	13
62	Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microbial Cell Factories, 2016, 15, 111.	4.0	45
63	Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microbial Cell Factories, 2016, 15, 67.	4.0	49
64	Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metabolic Engineering, 2016, 36, 99-115.	7.0	117
65	Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Microbial Cell Factories, 2015, 14, 133.	4.0	26
66	How to set up collaborations between academia and industrial biotech companies. Nature Biotechnology, 2015, 33, 237-240.	17.5	23
67	S. cerevisiae $\tilde{A}-$ S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Research, 2015, 15, .	2.3	112
68	Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2015, 81, 5662-5670.	3.1	42
69	A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. Eukaryotic Cell, 2015, 14, 804-816.	3.4	42
70	Editorial overview: Energy biotechnology. Current Opinion in Biotechnology, 2015, 33, viii-xi.	6.6	2
71	Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 30, 130-140.	7.0	19
72	The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Research, 2015, 15, .	2.3	28

#	Article	IF	CITATIONS
73	CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, .	2.3	360
74	Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains. Applied and Environmental Microbiology, 2015, 81, 6253-6267.	3.1	79
75	Evolutionary engineering to enhance starter culture performance in food fermentations. Current Opinion in Biotechnology, 2015, 32, 1-7.	6.6	74
76	Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae. Microbial Cell, 2015, 2, 429-444.	3.2	25
77	Increasing ATP conservation in maltose consuming yeast, a challenge for industrial organic acid production in non-aerated reactors. BMC Proceedings, 2014, 8, P185.	1.6	Ο
78	An alternative, arginaseâ€independent pathway for arginine metabolism in <scp><i>K</i></scp> <i>luyveromyces lactis</i> involves guanidinobutyrase as a key enzyme. Molecular Microbiology, 2014, 93, 369-389.	2.5	19
79	Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis. BMC Microbiology, 2014, 14, 114.	3.3	12
80	Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. Journal of Biotechnology, 2014, 192, 383-392.	3.8	110
81	Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metabolic Engineering, 2014, 21, 46-59.	7.0	93
82	Deletion of the <i>Saccharomyces cerevisiae ARO8</i> gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast, 2014, 32, n/a-n/a.	1.7	35
83	To divide or not to divide: A key role of Rim15 in calorie-restricted yeast cultures. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1020-1030.	4.1	24
84	Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, 741-754.	2.3	27
85	Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae. MBio, 2014, 5, e01696-14.	4.1	84
86	Proteome Adaptation of <i>Saccharomyces cerevisiae</i> to Severe Calorie Restriction in Retentostat Cultures. Journal of Proteome Research, 2014, 13, 3542-3553.	3.7	17
87	Physiology of the fuel ethanol strain <i>Saccharomyces cerevisiae</i> PE-2 at low pH indicates a context-dependent performance relevant for industrial applications. FEMS Yeast Research, 2014, 14, 1196-1205.	2.3	44
88	Physiological and Transcriptional Responses of Anaerobic Chemostat Cultures of Saccharomyces cerevisiae Subjected to Diurnal Temperature Cycles. Applied and Environmental Microbiology, 2014, 80, 4433-4449.	3.1	6
89	Evolutionary engineering of a glycerolâ€3â€phosphate dehydrogenaseâ€negative, acetateâ€reducing S accharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Microbial Biotechnology, 2014, 7, 44-53.	4.2	36
90	Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnology for Biofuels, 2013, 6, 48.	6.2	68

#	Article	IF	CITATIONS
91	A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microbial Cell Factories, 2013, 12, 47.	4.0	102
92	Longâ€ŧerm adaptation of <i>Saccharomyces cerevisiae</i> to the burden of recombinant insulin production. Biotechnology and Bioengineering, 2013, 110, 2749-2763.	3.3	29
93	Functional analysis and transcriptional regulation of two orthologs of <i>ARO10</i> , encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast <i>Saccharomyces pastorianus</i> CBS1483. FEMS Yeast Research, 2013, 13, 505-517.	2.3	39
94	Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnology for Biofuels, 2013, 6, 125.	6.2	117
95	Genome duplication and mutations in <i>ACE2</i> cause multicellular, fast-sedimenting phenotypes in evolved <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4223-31.	7.1	100
96	<i>amdSYM</i> , a new dominant recyclable marker cassette for <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 126-139.	2.3	143
97	Crystal ball – 2013. Microbial Biotechnology, 2013, 6, 3-16.	4.2	6
98	Metabolic engineering of yeast for production of fuels and chemicals. Current Opinion in Biotechnology, 2013, 24, 398-404.	6.6	263
99	Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H+ stoichiometry. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 201-207.	2.6	26
100	Resolving Phenylalanine Metabolism Sheds Light on Natural Synthesis of Penicillin G in Penicillium chrysogenum. Eukaryotic Cell, 2013, 12, 151-151.	3.4	0
101	One-step assembly and targeted integration of multigene constructs assisted by the I-Scel meganuclease in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 769-781.	2.3	49
102	Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures. Applied and Environmental Microbiology, 2013, 79, 5949-5961.	3.1	50
103	Impact of Velvet Complex on Transcriptome and Penicillin G Production in Glucose-Limited Chemostat Cultures of a Î ² -Lactam High-Producing <i>Penicillium chrysogenum</i> Strain. OMICS A Journal of Integrative Biology, 2012, 16, 320-333.	2.0	27
104	Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2012, 78, 7538-7548.	3.1	81
105	Resolving Phenylalanine Metabolism Sheds Light on Natural Synthesis of Penicillin G in Penicillium chrysogenum. Eukaryotic Cell, 2012, 11, 238-249.	3.4	24
106	Laboratory evolution of new lactate transporter genes in a jen1î" mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Research, 2012, 12, n/a-n/a.	2.3	33
107	Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis. Metabolic Engineering, 2012, 14, 437-448.	7.0	26
108	Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose. Applied and Environmental Microbiology, 2012, 78, 5052-5059.	3.1	33

#	Article	IF	CITATIONS
109	Toward pectin fermentation by Saccharomyces cerevisiae: Expression of the first two steps of a bacterial pathway for d-galacturonate metabolism. Journal of Biotechnology, 2012, 162, 303-310.	3.8	26
110	An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 131.	4.0	76
111	De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 155.	4.0	302
112	De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microbial Cell Factories, 2012, 11, 36.	4.0	238
113	Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?. BMC Systems Biology, 2012, 6, 151.	3.0	29
114	In vivo analysis of Saccharomyces cerevisiae plasma membrane ATPase Pma1p isoforms with increased in vitro H+/ATP stoichiometry. Antonie Van Leeuwenhoek, 2012, 102, 401-406.	1.7	9
115	Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Research, 2012, 12, 183-196.	2.3	75
116	Metabolic engineering, synthetic biology and systems biology. FEMS Yeast Research, 2012, 12, 103-103.	2.3	12
117	Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Research, 2012, 12, 359-374.	2.3	56
118	Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Research, 2012, 12, 387-397.	2.3	75
119	The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae. Molecular BioSystems, 2011, 7, 3316.	2.9	29
120	Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Research, 2011, 11, 299-306.	2.3	79
121	Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures. FEMS Yeast Research, 2011, 11, 603-620.	2.3	43
122	Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metabolic Engineering, 2011, 13, 518-526.	7.0	49
123	Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metabolic Engineering, 2011, 13, 694-703.	7.0	98
124	Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2133-2144.	4.1	29
125	Anaplerotic Role for Cytosolic Malic Enzyme in Engineered <i>Saccharomyces cerevisiae</i> Strains. Applied and Environmental Microbiology, 2011, 77, 732-738.	3.1	47
126	Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nature Communications, 2010, 1, 145.	12.8	100

#	Article	IF	CITATIONS
127	Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2010, 12, 537-551.	7.0	75
128	Involvement of Snf7p and Rim101p in the transcriptional regulation of TIR1 and other anaerobically upregulated genes in Saccharomyces cerevisiae. FEMS Yeast Research, 2010, 10, 367-384.	2.3	4
129	Involvement of Vacuolar Sequestration and Active Transport in Tolerance of <i>Saccharomycescerevisiae</i> to Hop Iso-1±-Acids. Applied and Environmental Microbiology, 2010, 76, 318-328.	3.1	40
130	Key Process Conditions for Production of C ₄ Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered <i>Saccharomyces cerevisiae</i> Strain. Applied and Environmental Microbiology, 2010, 76, 744-750.	3.1	64
131	Phosphoenolpyruvate Carboxykinase as the Sole Anaplerotic Enzyme in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2010, 76, 5383-5389.	3.1	41
132	Elimination of Glycerol Production in Anaerobic Cultures of a <i>Saccharomyces cerevisiae</i> Strain Engineered To Use Acetic Acid as an Electron Acceptor. Applied and Environmental Microbiology, 2010, 76, 190-195.	3.1	144
133	The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. Fungal Genetics and Biology, 2010, 47, 33-42.	2.1	36
134	Catalase Overexpression Reduces Lactic Acid-Induced Oxidative Stress in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2009, 75, 2320-2325.	3.1	75
135	Quantitative Physiology of <i>Saccharomyces cerevisiae</i> at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2009, 75, 5607-5614.	3.1	95
136	Identity of the Growth-Limiting Nutrient Strongly Affects Storage Carbohydrate Accumulation in Anaerobic Chemostat Cultures of <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2009, 75, 6876-6885.	3.1	33
137	Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered <i>Saccharomyces cerevisiae</i> Strains. Applied and Environmental Microbiology, 2009, 75, 907-914.	3.1	238
138	Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics, 2009, 10, 53.	2.8	55
139	Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics, 2009, 10, 75.	2.8	70
140	A threeâ€way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics, 2009, 9, 4787-4798.	2.2	39
141	Anaerobic homolactate fermentation with <i>Saccharomyces cerevisiae</i> results in depletion of ATP and impaired metabolic activity. FEMS Yeast Research, 2009, 9, 349-357.	2.3	26
142	An atypicalPMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strainSaccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Research, 2009, 9, 789-792.	2.3	35
143	Metabolic engineering of <i>Saccharomyces cerevisiae</i> for production of carboxylic acids: current status and challenges. FEMS Yeast Research, 2009, 9, 1123-1136.	2.3	134
144	Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metabolic Engineering, 2009, 11, 125-137.	7.0	49

#	Article	IF	CITATIONS
145	Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based <i>Saccharomyces cerevisiae</i> strain. FEMS Yeast Research, 2009, 9, 358-364.	2.3	115
146	The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on <i>Saccharomyces cerevisiae</i> Metabolism. Applied and Environmental Microbiology, 2008, 74, 2259-2266.	3.1	1,125
147	Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 2008, 26, 1161-1168.	17.5	427
148	New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess. BMC Genomics, 2008, 9, 100.	2.8	25
149	Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design. BMC Genomics, 2008, 9, 341.	2.8	50
150	Chemostat-Based Micro-Array Analysis in Baker's Yeast. Advances in Microbial Physiology, 2008, 54, 257-417.	2.4	50
151	Malic Acid Production by <i>Saccharomyces cerevisiae</i> : Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export. Applied and Environmental Microbiology, 2008, 74, 2766-2777.	3.1	325
152	Dynamics of Glycolytic Regulation during Adaptation of <i>Saccharomyces cerevisiae</i> to Fermentative Metabolism. Applied and Environmental Microbiology, 2008, 74, 5710-5723.	3.1	74
153	Engineering and Analysis of a <i>Saccharomyces cerevisiae</i> Strain That Uses Formaldehyde as an Auxiliary Substrate. Applied and Environmental Microbiology, 2008, 74, 3182-3188.	3.1	14
154	Physiological and Transcriptional Responses to High Concentrations of Lactic Acid in Anaerobic Chemostat Cultures of <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2008, 74, 5759-5768.	3.1	85
155	Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology (United Kingdom), 2008, 154, 337-346.	1.8	26
156	Control of the Glycolytic Flux in Saccharomyces cerevisiae Grown at Low Temperature. Journal of Biological Chemistry, 2007, 282, 10243-10251.	3.4	59
157	Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of l -Arabinose. Applied and Environmental Microbiology, 2007, 73, 4881-4891.	3.1	192
158	Physiological and Transcriptional Responses of <i>Saccharomyces cerevisiae</i> to Zinc Limitation in Chemostat Cultures. Applied and Environmental Microbiology, 2007, 73, 7680-7692.	3.1	53
159	Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology (United Kingdom), 2007, 153, 3864-3878.	1.8	108
160	Formate as an Auxiliary Substrate for Glucose-Limited Cultivation of Penicillium chrysogenum : Impact on Penicillin G Production and Biomass Yield. Applied and Environmental Microbiology, 2007, 73, 5020-5025.	3.1	34
161	Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae. Microbiology (United Kingdom), 2007, 153, 877-886.	1.8	25
162	The fluxes through glycolytic enzymes in <i>Saccharomyces cerevisiae</i> are predominantly regulated at posttranscriptional levels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15753-15758.	7.1	223

#	Article	IF	CITATIONS
163	Acclimation of <i>Saccharomyces cerevisiae</i> to Low Temperature: A Chemostat-based Transcriptome Analysis. Molecular Biology of the Cell, 2007, 18, 5100-5112.	2.1	106
164	Metabolic flux analysis of a glycerol-overproducingSaccharomyces cerevisiaestrain based on GC-MS, LC-MS and NMR-derived13C-labelling data. FEMS Yeast Research, 2007, 7, 216-231.	2.3	60
165	Transcriptional responses ofSaccharomyces cerevisiaeto preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Research, 2007, 7, 604-620.	2.3	78
166	Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures ofSaccharomyces cerevisiae. FEMS Yeast Research, 2007, 7, 819-833.	2.3	85
167	Exploiting combinatorial cultivation conditions to infer transcriptional regulation. BMC Genomics, 2007, 8, 25.	2.8	42
168	Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as aÂKey Component. Advances in Biochemical Engineering/Biotechnology, 2007, 108, 179-204.	1.1	143
169	Proteome analysis of yeast response to various nutrient limitations. Molecular Systems Biology, 2006, 2, 2006.0026.	7.2	125
170	The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiology Letters, 2006, 153, 75-81.	1.8	37
171	Physiological characterization and fed-batch production of an extracellular maltase of Schizosaccharomyces pombeCBS 356. FEMS Yeast Research, 2006, 6, 888-901.	2.3	18
172	A new physiological role for Pdr12p inSaccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Research, 2006, 6, 937-945.	2.3	64
173	Engineering NADH metabolism inSaccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Research, 2006, 6, 1193-1203.	2.3	40
174	Enzymic analysis of NADPH metabolism in β-lactam-producing Penicillium chrysogenum: Presence of a mitochondrial NADPH dehydrogenase. Metabolic Engineering, 2006, 8, 91-101.	7.0	42
175	Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metabolic Engineering, 2006, 8, 532-542.	7.0	48
176	Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek, 2006, 90, 391-418.	1.7	411
177	Carbonic anhydrase (Nce103p): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochemical Journal, 2005, 391, 311-316.	3.7	88
178	Contribution of the transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Research, 2005, 5, 885-897.	2.3	45
179	Physiological and genome-wide transcriptional responses of to high carbon dioxide concentrations. FEMS Yeast Research, 2005, 5, 579-593.	2.3	49
180	Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 2005, 5, 399-409.	2.3	346

#	Article	IF	CITATIONS
181	Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain. FEMS Yeast Research, 2005, 5, 925-934.	2.3	292
182	Physiological Characterization of the ARO10 -Dependent, Broad-Substrate-Specificity 2-Oxo Acid Decarboxylase Activity of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 3276-3284.	3.1	117
183	Two-dimensional Transcriptome Analysis in Chemostat Cultures. Journal of Biological Chemistry, 2005, 280, 437-447.	3.4	137
184	Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology (United Kingdom), 2005, 151, 1657-1669.	1.8	101
185	Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered <i>Saccharomyces cerevisiae</i> : Possible Consequence of Energy-Dependent Lactate Export. Applied and Environmental Microbiology, 2004, 70, 2898-2905.	3.1	365
186	Directed Evolution of Pyruvate Decarboxylase-Negative Saccharomyces cerevisiae , Yielding a C 2 -Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast. Applied and Environmental Microbiology, 2004, 70, 159-166.	3.1	188
187	Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity. Applied and Environmental Microbiology, 2004, 70, 1956-1963.	3.1	56
188	Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 9125-9138.	3.4	264
189	Minimal metabolic engineering of for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Research, 2004, 4, 655-664.	2.3	220
190	Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metabolic Engineering, 2004, 6, 245-255.	7.0	409
191	Nanoarrays:Â A Method for Performing Enzymatic Assays. Analytical Chemistry, 2004, 76, 4112-4117.	6.5	29
192	Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Archives of Microbiology, 2003, 180, 134-141.	2.2	117
193	High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine algaCrypthecodinium cohnii. Biotechnology and Bioengineering, 2003, 81, 666-672.	3.3	239
194	Comparative genotyping of the laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Research, 2003, 4, 259-269.	2.3	50
195	High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by ?. FEMS Yeast Research, 2003, 4, 69-78.	2.3	300
196	Identification and Characterization of Phenylpyruvate Decarboxylase Genes in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 4534-4541.	3.1	164
197	The Genome-wide Transcriptional Responses of Saccharomyces cerevisiae Grown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur. Journal of Biological Chemistry, 2003, 278, 3265-3274.	3.4	292
198	Overproduction of Threonine Aldolase Circumvents the Biosynthetic Role of Pyruvate Decarboxylase in Glucose-Limited Chemostat Cultures of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 2094-2099.	3.1	43

Jack Jack T Pronk

#	Article	IF	CITATIONS
199	Auxotrophic Yeast Strains in Fundamental and Applied Research. Applied and Environmental Microbiology, 2002, 68, 2095-2100.	3.1	240
200	Reproducibility of Oligonucleotide Microarray Transcriptome Analyses. Journal of Biological Chemistry, 2002, 277, 37001-37008.	3.4	208
201	Novel Pathway for Alcoholic Fermentation of δ-Cluconolactone in the Yeast <i>Saccharomyces bulderi</i> . Journal of Bacteriology, 2002, 184, 672-678.	2.2	25
202	Effect of High Product Concentration in a Dual Fed-batch Asymmetric 3-oxo Ester Reduction by Baker's Yeast. Biocatalysis and Biotransformation, 2002, 20, 337-345.	2.0	13
203	Metabolic Engineering of Glycerol Production in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2002, 68, 2814-2821.	3.1	108
204	Hxt-Carrier-Mediated Glucose Efflux upon Exposure of Saccharomyces cerevisiae to Excess Maltose. Applied and Environmental Microbiology, 2002, 68, 4259-4265.	3.1	29
205	Functional analysis of structural genes for NAD+-dependent formate dehydrogenase inSaccharomyces cerevisiae. Yeast, 2002, 19, 509-520.	1.7	60
206	Two mechanisms for oxidation of cytosolic NADPH byKluyveromyces lactis mitochondria. Yeast, 2002, 19, 813-824.	1.7	43
207	Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 139-149.	2.3	30
208	Influence of the ethanol and glucose supply rate on the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast. Biotechnology and Bioengineering, 2001, 75, 29-38.	3.3	32
209	Human acylphosphatase cannot replace phosphoglycerate kinase in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek, 2001, 80, 11-17.	1.7	3
210	Stoichiometry and compartmentation of NADH metabolism inSaccharomyces cerevisiae. FEMS Microbiology Reviews, 2001, 25, 15-37.	8.6	410
211	Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4inSaccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 139-149.	2.3	41
212	Oxygen Requirements of the Food Spoilage Yeast Zygosaccharomyces bailii in Synthetic and Complex Media. Applied and Environmental Microbiology, 2001, 67, 2123-2128.	3.1	43
213	Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2001, 25, 15-37.	8.6	14
214	High-cell-density cultivation of yeasts on disaccharides in oxygen-limited batch cultures. , 2000, 49, 621-628.		12
215	Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. Biotechnology and Bioengineering, 2000, 68, 517-523.	3.3	99
216	Regulation of pyruvate metabolism in chemostat cultures ofKluyveromyces lactis CBS 2359. Yeast, 2000. 16. 611-620.	1.7	34

#	Article	IF	CITATIONS
217	Hydrolytic activity in baker's yeast limits the yield of asymmetric 3-oxo ester reduction. Biotechnology and Bioengineering, 2000, 69, 370-376.	3.3	43
218	Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2000, 26, 724-736.	3.2	107
219	In Vivo Analysis of the Mechanisms for Oxidation of Cytosolic NADH by Saccharomyces cerevisiaeMitochondria. Journal of Bacteriology, 2000, 182, 2823-2830.	2.2	127
220	The Saccharomyces cerevisiae ICL2 Gene Encodes a Mitochondrial 2-Methylisocitrate Lyase Involved in Propionyl-Coenzyme A Metabolism. Journal of Bacteriology, 2000, 182, 7007-7013.	2.2	119
221	The Mitochondrial Alcohol Dehydrogenase Adh3p Is Involved in a Redox Shuttle in <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 2000, 182, 4730-4737.	2.2	150
222	Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast, 2000, 16, 611-620.	1.7	2
223	Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. Biotechnology and Bioengineering, 2000, 68, 517.	3.3	2
224	By-product formation during exposure of respiringSaccharomyces cerevisiaecultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase. FEMS Microbiology Letters, 1999, 179, 107-113.	1.8	10
225	Growth requirements of pyruvate-decarboxylase-negativeSaccharomyces cerevisiae. FEMS Microbiology Letters, 1999, 174, 73-79.	1.8	98
226	Impaired growth on glucose of a pyruvate dehydrogenase-negative mutant ofKluyveromyces lactisis due to a limitation in mitochondrial acetyl-coenzyme A uptake. FEMS Microbiology Letters, 1999, 177, 23-28.	1.8	11
227	Steady-state and transient-state analysis of growth and metabolite production in aSaccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. , 1999, 66, 42-50.		36
228	Glucose Uptake Kinetics and Transcription of HXTGenes in Chemostat Cultures of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 15350-15359.	3.4	197
229	Steadyâ€state and transientâ€state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvateâ€decarboxylase activity. Biotechnology and Bioengineering, 1999, 66, 42-50.	3.3	1
230	Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiology Letters, 1999, 174, 73-79.	1.8	1
231	High-Level Expression of <i>Plasmodium vivax</i> Apical Membrane Antigen 1 (AMA-1) in <i>Pichia pastoris</i> : Strong Immunogenicity in <i>Macaca mulatta</i> Immunized with <i>P. vivax</i> AMA-1 and Adjuvant SBAS2. Infection and Immunity, 1999, 67, 43-49.	2.2	81
232	Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. Antonie Van Leeuwenhoek, 1998, 74, 253-263.	1.7	18
233	Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiringSaccharomyces cerevisiaecells does not reduce acetate production after exposure to glucose excess. FEMS Microbiology Letters, 1998, 165, 15-20.	1.8	23
234	Regulation of alcoholic fermentation in batch and chemostat cultures ofKluyveromyces lactis CBS 2359. , 1998, 14, 459-469.		100

#	Article	IF	CITATIONS
235	The Saccharomyces cerevisiae NDE1 and NDE2 Genes Encode Separate Mitochondrial NADH Dehydrogenases Catalyzing the Oxidation of Cytosolic NADH. Journal of Biological Chemistry, 1998, 273, 24529-24534.	3.4	247

Inactivation of the Kluyveromyces lactis KIPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 1037 f 50 697

237	Identification and Characterization of <i>MAE1</i> , the <i>Saccharomyces cerevisiae</i> Structural Gene Encoding Mitochondrial Malic Enzyme. Journal of Bacteriology, 1998, 180, 2875-2882.	2.2	150
238	Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2-Oxo Acids but Is Not Essential for Fusel Alcohol Production by <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 1998, 64, 1303-1307.	3.1	62
239	Effect of Specific Growth Rate on Fermentative Capacity of Baker's Yeast. Applied and Environmental Microbiology, 1998, 64, 4226-4233.	3.1	261
240	Effects of Pyruvate Decarboxylase Overproduction on Flux Distribution at the Pyruvate Branch Point in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 1998, 64, 2133-2140.	3.1	66
241	The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiology Letters, 1997, 153, 75-81.	1.8	9
242	The Two Acetyl-coenzyme A Synthetases of Saccharomyces cerevisiae Differ with Respect to Kinetic Properties and Transcriptional Regulation. Journal of Biological Chemistry, 1996, 271, 28953-28959.	3.4	204
243	Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast, 1996, 12, 247-257.	1.7	196
244	Pyruvate Metabolism inSaccharomyces cerevisiae. Yeast, 1996, 12, 1607-1633.	1.7	650
245	Validation of a Metabolic Network for Saccharomyces cerevisiae Using Mixed Substrate Studies. Biotechnology Progress, 1996, 12, 434-448.	2.6	63
246	Metabolic fluxes in chernostat cultures of Schizosaccharomyces pombe grown on mixtures of glucose and ethanol. Microbiology (United Kingdom), 1996, 142, 1399-1407.	1.8	31
247	Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast, 1996, 12, 247-57.	1.7	78
248	Pyruvate Decarboxylase: An Indispensable Enzyme for Growth of Saccharomyces cerevisiae on Glucose. Yeast, 1996, 12, 247-257.	1.7	149
249	Highâ€cellâ€density cultivation of yeasts on disaccharides in oxygenâ€limited batch cultures. Biotechnology and Bioengineering, 1996, 49, 621-628.	3.3	11
250	Effects of growth conditions on mitochondrial morphology inSaccharomyces cerevisiae. Antonie Van Leeuwenhoek, 1995, 67, 243-253.	1.7	97
251	Transient responses ofCandida utilis to oxygen limitation: Regulation of the Kluyver effect for maltose. Yeast, 1995, 11, 317-325.	1.7	16
252	Regulation of carbon metabolism in chemostat cultures ofSaccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast, 1995, 11, 407-418.	1.7	141

#	Article	IF	CITATIONS
253	Use of chemostat data for modelling extracellular-inulinase production by Kluyveromyces marxianus in a high-cell-density fed-batch process. Journal of Bioscience and Bioengineering, 1995, 79, 54-58.	0.9	14
254	Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek, 1993, 63, 343-352.	1.7	173
255	Metabolism of tetrathionate inThiobacillus acidophilus. FEMS Microbiology Letters, 1993, 112, 167-172.	1.8	26
256	Oxidation and Reduction of Iron by Acidophilic Bacteria. Geomicrobiology Journal, 1992, 10, 153-171.	2.0	99
257	Oxidation of reduced sulphur compounds by intact cells of Thiobacillus acidophilus. Archives of Microbiology, 1992, 157, 161-168.	2.2	54
258	Purification and paritial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus. FEBS Journal, 1992, 209, 367-374.	0.2	31
259	Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. Journal of Bioscience and Bioengineering, 1991, 72, 101-105.	0.9	72
260	Pyruvate Metabolism in Saccharomyces cerevisiae. , 0, .		10