
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5084200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tissues & Organs Biochemistry of Hematopoiesis. , 2021, , 434-436.		0
2	Adoptive transfer of immature myeloid cells lacking NFâ€̂PB p50 (p50″MC) impedes the growth of MHCâ€matched highâ€risk neuroblastoma. Molecular Oncology, 2021, 15, 1783-1796.	4.6	1
3	NF-κB p50-deficient immature myeloid cell (p50-IMC) adoptive transfer slows the growth of murine prostate and pancreatic ductal carcinoma. , 2020, 8, e000244.		7
4	C/EBPα induces Ebf1 gene expression in common lymphoid progenitors. PLoS ONE, 2020, 15, e0244161.	2.5	2
5	HoxA9 binds and represses the Cebpa +8 kb enhancer. PLoS ONE, 2019, 14, e0217604.	2.5	5
6	Progression from the Common Lymphoid Progenitor to B/Myeloid PreproB and ProB Precursors during B Lymphopoiesis Requires C/EBPα. Journal of Immunology, 2018, 201, 1692-1704.	0.8	9
7	Absence of host NF-κB p50 induces murine glioblastoma tumor regression, increases survival, and decreases T-cell induction of tumor-associated macrophage M2 polarization. Cancer Immunology, Immunotherapy, 2018, 67, 1491-1503.	4.2	26
8	Absence of myeloid Klf4 reduces prostate cancer growth with pro-atherosclerotic activation of tumor myeloid cells and infiltration of CD8 T cells. PLoS ONE, 2018, 13, e0191188.	2.5	13
9	RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML. Advances in Experimental Medicine and Biology, 2017, 962, 265-282.	1.6	8
10	Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis. Journal of Biological Chemistry, 2016, 291, 826-836.	3.4	9
11	A review of the literature for intra-arterial chemotherapy used to treat retinoblastoma. Pediatric Radiology, 2016, 46, 1223-1233.	2.0	48
12	C/EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome–lysosome fusion. Cancer Letters, 2016, 375, 152-161.	7.2	28
13	In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis. PLoS ONE, 2016, 11, e0150809.	2.5	21
14	Pathways Relevant to AML Pathogenesis Targeting the Hematopoietic-Specific Cebpa +37 Kb Enhancer. Blood, 2016, 128, 2691-2691.	1.4	0
15	C/EBPα in normal and malignant myelopoiesis. International Journal of Hematology, 2015, 101, 330-341.	1.6	91
16	The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors. PLoS ONE, 2015, 10, e0126385.	2.5	38
17	Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells. PLoS ONE, 2015, 10, e0130441.	2.5	16
18	The Roles of RUNX1 in Human Hematopoiesis and Megakaryopoiesis Revealed By Genome-Targeted Human iPSCs and an Improved Hematopoietic Differentiation Model. Blood, 2015, 126, 1167-1167.	1.4	0

#	Article	IF	CITATIONS
19	The Multimerization Domain of Cbfß-SMMHC Is Required for Leukemogenesis. Blood, 2015, 126, 3666-3666.	1.4	1
20	In Vivo Deletion of the Cebpa +37 Kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis. Blood, 2015, 126, 1178-1178.	1.4	0
21	The <i>Cebpa</i> +37-kb enhancer directs transgene expression to myeloid progenitors and to long-term hematopoietic stem cells. Journal of Leukocyte Biology, 2014, 96, 419-426.	3.3	22
22	Granulopoiesis Requires Increased C/EBPα Compared to Monopoiesis, Correlated with Elevated Cebpa in Immature G-CSF Receptor versus M-CSF Receptor Expressing Cells. PLoS ONE, 2014, 9, e95784.	2.5	45
23	Loss of IKKβ Increases the Number and Self-Renewal Capacity of Hematopoietic Stem Cells. Blood, 2014, 124, 4345-4345.	1.4	Ο
24	Functional Dissection of the C Terminus of CBFβ-SMMHC Indicates a Critical Role of the Multimerization Domain during Hematopoiesis and Leukemogenesis. Blood, 2014, 124, 2218-2218.	1.4	0
25	Wilms Tumor. Pediatrics in Review, 2013, 34, 328-330.	0.4	30
26	The RUNX1-Regulated Cebpa +37 Kb Enhancer Directs Human CD4 Transgene Expression To Long-Term Hematopoietic Stem Cells and Preferentially To Myeloid Compared With Lymphoid Or Erythroid Progenitors. Blood, 2013, 122, 2442-2442.	1.4	0
27	Src Kinase Can Activate RUNX1 Activity Via Phosphorylation Of C-Terminal Tyrosines and Activated RUNX1 Stimulates Granulopoiesis. Blood, 2013, 122, 1210-1210.	1.4	Ο
28	A Carboxy-Terminally Truncated G-CSF Receptor Abolishes Apoptosis Induction By Neutrophil Elastase G185R Mutant In Myeloid Cells,. Blood, 2013, 122, 443-443.	1.4	14
29	Wilms Tumor. Pediatrics in Review, 2013, 34, 328-330.	0.4	12
30	Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood, 2012, 119, 4408-4418.	1.4	87
31	Canonical NF-κB Signalling Is a Potential Target in FLT3/ITD AML Blood, 2012, 120, 2447-2447.	1.4	2
32	Reduced C/EBPα Expression Favors Monopoiesis Over Granulopoiesis. Blood, 2012, 120, 1230-1230.	1.4	0
33	C/EBPα and C/EBPα oncoproteins regulate nfkb1 and displace histone deacetylases from NF-κB p50 homodimers to induce NF-IºB target genes. Blood, 2011, 117, 4085-4094.	1.4	40
34	Phosphorylation of RUNX1 by Cyclin-dependent Kinase Reduces Direct Interaction with HDAC1 and HDAC3. Journal of Biological Chemistry, 2011, 286, 208-215.	3.4	49
35	C/EBPα, C/EBPα Oncoproteins, or C/EBPβ Preferentially Bind NF-κB p50 Compared with p65, Focusing Therapeutic Targeting on the C/EBP:p50 Interaction. Molecular Cancer Research, 2011, 9, 1395-1405.	3.4	20
36	AP-1 protein induction during monopoiesis favors C/EBP: AP-1 heterodimers over C/EBP homodimerization and stimulates FosB transcription. Journal of Leukocyte Biology, 2011, 90, 643-651.	3.3	33

#	Article	IF	CITATIONS
37	C/EBPα Dysregulation in AML and ALL. Critical Reviews in Oncogenesis, 2011, 16, 93-102.	0.4	51
38	PU.1 Is a Downstream Target of C/EBPα in Normal Hematopoiesis and Acute Myeloid Leukemia. Blood, 2011, 118, 1353-1353.	1.4	0
39	Erythroid maturation and proliferation arrest: The GATA-1 connection. Cell Cycle, 2010, 9, 1873-1877.	2.6	2
40	Myeloid Expansion In the Absence of RUNX1 Is Associated with Increased Monopoiesis, Reduced Granulopoiesis, and Diminished CEBPA Gene Expression, Effects of Potential Relevance to Myeloid Transformation. Blood, 2010, 116, 3147-3147.	1.4	5
41	SHP2 Tyrosine Phosphatase Enhances CEBPA Gene Expression, STAT3 Activation, and Cytokine-Dependent Granulopoiesis Blood, 2010, 116, 1550-1550.	1.4	0
42	C/EBP and AP-1 Proteins Form Leucine Zipper Heterodimers and Reduce C/EBP Homodimer Formation During Monopoiesis Blood, 2010, 116, 2606-2606.	1.4	1
43	NF-κB Target Genes Activation Via Displacement of HDACs Bound to NF-κB p50 Homodimers by C/EBPα, Its AML Oncoproteins or C/EBPβ Blood, 2010, 116, 3637-3637.	1.4	0
44	C/EBPα, C/EBPα Oncoproteins, or C/EBPβ Preferentially Bind NF-κB p50 Compared with p65 Via Conserved Residues In the C/EBP Basic Region. Blood, 2010, 116, 708-708.	1.4	0
45	Cell cycle and developmental control of hematopoiesis by Runx1. Journal of Cellular Physiology, 2009, 219, 520-524.	4.1	86
46	M-CSF elevates c-Fos and phospho-C/EBPα(S21) via ERK whereas G-CSF stimulates SHP2 phosphorylation in marrow progenitors to contribute to myeloid lineage specification. Blood, 2009, 114, 2172-2180.	1.4	54
47	Phosphorylation of RUNX1 by Cyclin-Dependent Kinase Reduces Direct Interaction with HDAC1 and HDAC3 and Stimulates Marrow Progenitor Proliferation Blood, 2009, 114, 2508-2508.	1.4	1
48	C/EBPα:C/EBPα and C/EBPα:Jun Leucine Zipper Complexes Are Detectable in Myeloid Cells Via Binding to Distinct DNA Elements Blood, 2009, 114, 1458-1458.	1.4	1
49	C/EBPα or Its Leukemic Mutants Directly Activate nfkb1 Transcription and Displace HDAC1 or HDAC3 From Chromatin-Associated NF-κB p50 to Induce Anti-Apoptotic Genes Blood, 2009, 114, 76-76.	1.4	1
50	Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood, 2008, 111, 1193-1200.	1.4	53
51	Twist-2 Controls Myeloid Lineage Development and Function. PLoS Biology, 2008, 6, e316.	5.6	65
52	Phosphorylation of Runx1 by Cyclin-Dependent Kinases Regulates Its Interaction with HDAC1 and HDAC3 Blood, 2008, 112, 1381-1381.	1.4	1
53	A Positive Feedback Loop Between C/EBPα and NF-κB p50 Inhibits Both the Intrinsic and Extrinsic Apoptosis Pathways. Blood, 2008, 112, 501-501.	1.4	1
54	M-CSF Preferentially Induces C-Fos Via ERK to Specify Monopoiesis Whereas G-CSF Directs Granulopoiesis Via SHP2. Blood, 2008, 112, 2887-2887.	1.4	0

#	Article	IF	CITATIONS
55	C/Ebpβ Inhibits Apoptosis in Hematopoietic Cells Via Interaction with NF-βb p50 Blood, 2008, 112, 1332-1332.	1.4	0
56	C/EBPα induces PU.1 and interacts with AP-1 and NF-κB to regulate myeloid development. Blood Cells, Molecules, and Diseases, 2007, 39, 340-343.	1.4	57
57	C/EBPα binds and activates the PU.1 distal enhancer to induce monocyte lineage commitment. Blood, 2007, 110, 3136-3142.	1.4	101
58	Direct Comparison of G-CSF Receptor and M-CSF Receptor Signaling Leading to AP-1 and STAT Induction and Identification of Novel Signaling Pathways Blood, 2007, 110, 2206-2206.	1.4	0
59	C/EBPα:AP-1 Leucine Zipper Heterodimers Bind Novel DNA Elements, Activate the PU.1 Promoter, and Direct Monocyte Lineage Commitment More Potently Than C/EBPα Homodimers or AP-1 Blood, 2007, 110, 1232-1232.	1.4	0
60	Cyclin-Dependent Kinase Phosphorylation of RUNX1/AML1 on Three Sites Increases Trans-Activation Potency and Stimulates Cell Proliferation Blood, 2007, 110, 3351-3351.	1.4	0
61	C/EBPα directs monocytic commitment of primary myeloid progenitors. Blood, 2006, 108, 1223-1229.	1.4	75
62	C/EBPα determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation. Blood, 2006, 107, 4308-4316.	1.4	71
63	Heterodimers Formed Via Leucine Zipper Interaction between C/EBPα and c-Jun or c-Fos Induce Monocytic Lineage Commitment Blood, 2006, 108, 1170-1170.	1.4	2
64	C/EBPα Binds and Activates the Distal PU.1 Enhancer Blood, 2006, 108, 1176-1176.	1.4	1
65	Enforced RUNX1 Expression Increased the Numbers of CD34+ and CD45+ Cells from Human Embryonic Stem Cell-Derived Embryoid Bodies Blood, 2006, 108, 1340-1340.	1.4	0
66	CCAAT/Enhancer Binding Protein α (C/EBPα) and C/EBPα Myeloid Oncoproteins Induce Bcl-2 via Interaction of Their Basic Regions with Nuclear Factor-κB p50. Molecular Cancer Research, 2005, 3, 585-596.	3.4	50
67	C/EBPα Zippers with AP-1 but Not Maf Proteins, and C/EBPα:AP-1 Heterodimers Preferentially Bind a Hybrid cis Element Blood, 2005, 106, 2717-2717.	1.4	1
68	RUNX1/AML1 Is Phosphorylated at Both Its N- and C-Terminus by cdk6/cyclin D3 or cdk1/cyclin B Blood, 2005, 106, 1360-1360.	1.4	0
69	C/EBPα and C/EBPα Myeloid Oncoproteins Induce Bcl-2 Via Interaction of Their Basic Regions with NF-κB p50 Blood, 2005, 106, 2992-2992.	1.4	10
70	Exogenous C/EBPα Favors the Monocytic Commitment and Maturation of Normal Murine Myeloid Progenitors Blood, 2005, 106, 2711-2711.	1.4	0
71	Mutational Analysis of the CBFÎ ² -SMMHC Assembly Competence Domain Identifies a Surface Critical for Multimerization and Inhibition of RUNX1/AML1 Blood, 2005, 106, 2853-2853.	1.4	0
72	AML1/RUNX1 Increases During G1 to S Cell Cycle Progression Independent of Cytokine-dependent Phosphorylation and Induces Cyclin D3 Gene Expression. Journal of Biological Chemistry, 2004, 279, 15678-15687.	3.4	79

#	Article	IF	CITATIONS
73	C/EBPαp30, a myeloid leukemia oncoprotein, limits G-CSF receptor expression but not terminal granulopoiesis via site-selective inhibition of C/EBP DNA binding. Oncogene, 2004, 23, 716-725.	5.9	37
74	Exogenous C/EBPα Increases the Monocytic Maturation of Normal Murine Myeloid Progenitors Blood, 2004, 104, 3562-3562.	1.4	0
75	Multimerization and Corepression Mediated by the CBFÎ ² -SMMHC Assembly Competence Domain Are Partially Separable and Corepression Is Required to Inhibit Core Binding Factor Activities Blood, 2004, 104, 1972-1972.	1.4	0
76	CCAAT Enhancer Binding Protein-α (C/EBPα) Determines Myeloid Versus Erythroid Cell Fate in Multipotential Progenitors Blood, 2004, 104, 1603-1603.	1.4	0
77	C/EBPα and C/EBPα Myeloid Oncoproteins Inhibit Apoptosis and Induce Bcl-2 Via DNA-Binding Dependent and Independent Mechanisms Blood, 2004, 104, 2561-2561.	1.4	Ο
78	Cell cycle inhibition mediated by the outer surface of the C/EBPα basic region is required but not sufficient for granulopoiesis. Oncogene, 2003, 22, 2548-2557.	5.9	43
79	Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein α. Blood Cells, Molecules, and Diseases, 2003, 31, 338-341.	1.4	45
80	Cross-talk between regulators of myeloid development: C/EBPα binds and activates the promoter of the PU.1 gene. Journal of Leukocyte Biology, 2003, 74, 464-470.	3.3	47
81	The inv(16) Fusion Protein Associates with Corepressors via a Smooth Muscle Myosin Heavy-Chain Domain. Molecular and Cellular Biology, 2003, 23, 607-619.	2.3	148
82	Multimerization via Its Myosin Domain Facilitates Nuclear Localization and Inhibition of Core Binding Factor (CBF) Activities by the CBFβ-Smooth Muscle Myosin Heavy Chain Myeloid Leukemia Oncoprotein. Molecular and Cellular Biology, 2002, 22, 8278-8291.	2.3	26
83	Ras Signaling Enhances the Activity of C/EBPα to Induce Granulocytic Differentiation by Phosphorylation of Serine 248. Journal of Biological Chemistry, 2002, 277, 26293-26299.	3.4	67
84	CCAAT/enhancer-binding proteins are required for granulopoiesis independent of their induction of the granulocyte colony-stimulating factor receptor. Blood, 2002, 99, 2776-2785.	1.4	78
85	Runx1, c-Myb, and C/EBP? couple differentiation to proliferation or growth arrest during hematopoiesis. Journal of Cellular Biochemistry, 2002, 86, 624-629.	2.6	27
86	Transcriptional Regulation of Myelopoiesis. International Journal of Hematology, 2002, 75, 466-472.	1.6	33
87	Transcriptional regulation of granulocyte and monocyte development. Oncogene, 2002, 21, 3377-3390.	5.9	290
88	AML1 stimulates G1 to S progression via its transactivation domain. Oncogene, 2002, 21, 3247-3252.	5.9	43
89	Acceleration of G(1) cooperates with core binding factor beta-smooth muscle myosin heavy chain to induce acute leukemia in mice. Cancer Research, 2002, 62, 2232-5.	0.9	24
90	TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Research, 2002, 62, 3904-8.	0.9	82

#	Article	IF	CITATIONS
91	Intensive timed sequential remission induction chemotherapy with high-dose cytarabine for childhood acute myeloid leukemia. Medical and Pediatric Oncology, 2001, 37, 365-371.	1.0	12
92	Exogenous cdk4 overcomes reducedcdk4 RNA and inhibition of G1 progression in hematopoietic cells expressing a dominant-negative CBF – a model for overcoming inhibition of proliferation by CBF oncoproteins. Oncogene, 2000, 19, 2695-2703.	5.9	52
93	C/EBP Bypasses Granulocyte Colony-Stimulating Factor Signals to Rapidly Induce PU.1 Gene Expression, Stimulate Granulocytic Differentiation, and Limit Proliferation in 32D cl3 Myeloblasts. Blood, 1999, 94, 560-571.	1.4	166
94	TLE, the Human Homolog of Groucho, Interacts with AML1 and Acts as a Repressor of AML1-Induced Transactivation. Biochemical and Biophysical Research Communications, 1998, 252, 582-589.	2.1	101
95	The Core Binding Factor (CBF) α Interaction Domain and the Smooth Muscle Myosin Heavy Chain (SMMHC) Segment of CBFÎ2-SMMHC Are Both Required to Slow Cell Proliferation. Journal of Biological Chemistry, 1998, 273, 31534-31540.	3.4	38
96	CBFβ-SMMHC, Expressed in M4eo Acute Myeloid Leukemia, Reduces p53 Induction and Slows Apoptosis in Hematopoietic Cells Exposed to DNA-Damaging Agents. Blood, 1998, 92, 4344-4352.	1.4	42
97	CBFÎ ² -SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells. Oncogene, 1997, 15, 1315-1327.	5.9	75
98	Acute lymphoblastic leukemia (ALL). , 0, , 777-785.		0