
M T Rodgers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5083430/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	1-Alkyl-3-methylimidazolium cation binding preferences in hexafluorophosphate ionic liquid clusters determined using competitive TCID measurements and theoretical calculations. Physical Chemistry Chemical Physics, 2021, 23, 18145-18162.	2.8	4
2	Structural determination of arginine-linked cisplatin complexes <i>via</i> IRMPD action spectroscopy: arginine binds to platinum <i>via</i> NO ^{â^'} binding mode. Physical Chemistry Chemical Physics, 2021, 23, 21959-21971.	2.8	6
3	Influence of 5-Methylation and the 2′- and 3′-Hydroxy Substituents on the Base Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of <i>i</i> -Motif Structures. Journal of Physical Chemistry A, 2021, 125, 5939-5955.	2.5	8
4	Nature and strength of intrinsic cation–anion interactions of 1-alkyl-3-methylimidazolium hexafluorophosphate clusters. Physical Chemistry Chemical Physics, 2021, 23, 13405-13418.	2.8	3
5	Infrared multiple photon dissociation action spectroscopy of protonated unsymmetrical dimethylhydrazine and proton-bound dimers of hydrazine and unsymmetrical dimethylhydrazine. Physical Chemistry Chemical Physics, 2021, 23, 25877-25885.	2.8	2
6	Influence of the local environment on the intrinsic structures of gas-phase cytidine-5′-monophosphates. International Journal of Mass Spectrometry, 2020, 447, 116234.	1.5	0
7	Gas-Phase Binding Energies and Dissociation Dynamics of 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid Clusters. Journal of Physical Chemistry A, 2020, 124, 10181-10198.	2.5	8
8	Absolute Trends and Accurate and Precise Gas-Phase Binding Energies of 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid Clusters from Combined Independent and Competitive TCID Measurements. Journal of Physical Chemistry A, 2020, 124, 10199-10215.	2.5	7
9	Structural and Energetic Effects of O2′-Ribose Methylation of Protonated Pyrimidine Nucleosides. Journal of the American Society for Mass Spectrometry, 2019, 30, 2318-2334.	2.8	5
10	Impact of Sodium Cationization on Gas-Phase Conformations of DNA and RNA Cytidine Mononucleotides. Journal of the American Society for Mass Spectrometry, 2019, 30, 1758-1767.	2.8	4
11	Amino acid-linked platinum(II) compounds: non-canonical nucleoside preferences and influence on glycosidic bond stabilities. Journal of Biological Inorganic Chemistry, 2019, 24, 985-997.	2.6	4
12	Experimental and Computational Study of the Group 1 Metal Cation Chelates with Lysine: Bond Dissociation Energies, Structures, and Structural Trends. Journal of Physical Chemistry B, 2019, 123, 1983-1997.	2.6	11
13	Structures and Relative Glycosidic Bond Stabilities of Protonated 2′-Fluoro-Substituted Purine Nucleosides. Journal of the American Society for Mass Spectrometry, 2019, 30, 1521-1536.	2.8	5
14	IRMPD action spectroscopy, ER-CID experiments, and theoretical approaches investigate intrinsic L-thymidine properties compared to D-thymidine: Findings support robust methodology. International Journal of Mass Spectrometry, 2019, 441, 32-43.	1.5	2
15	Infrared multiple photon dissociation action spectroscopy of protonated glycine, histidine, lysine, and arginine complexed with 18-crown-6 ether. Physical Chemistry Chemical Physics, 2019, 21, 12625-12639.	2.8	9
16	Impact of the 2â€2- and 3â€2-Sugar Hydroxyl Moieties on Gas-Phase Nucleoside Structure. Journal of the American Society for Mass Spectrometry, 2019, 30, 832-845.	2.8	7
17	Influence of 2′-fluoro modification on glycosidic bond stabilities and gas-phase ion structures of protonated pyrimidine nucleosides. Journal of Fluorine Chemistry, 2019, 219, 10-22.	1.7	13
18	Gas-phase structures of protonated arabino nucleosides. International Journal of Mass Spectrometry, 2019, 438, 124-134.	1.5	7

#	Article	IF	CITATIONS
19	Relative glycosidic bond stabilities of naturally occurring methylguanosines: 7-methylation is intrinsically activating. European Journal of Mass Spectrometry, 2019, 25, 16-29.	1.0	6
20	Conformations and N-glycosidic bond stabilities of sodium cationized 2′-deoxycytidine and cytidine: Solution conformation of [Cyd + Na]+ is preserved upon ESI. International Journal of Mass Spectrometry, 2018, 429, 18-27.	1.5	20
21	Protonated Asparaginyl-Alanine Decomposition: a TCID, SORI-CID, and Computational Analysis. Journal of the American Society for Mass Spectrometry, 2018, 29, 2341-2359.	2.8	7
22	Structural and Energetic Effects of O2′-Ribose Methylation of Protonated Purine Nucleosides. Journal of Physical Chemistry B, 2018, 122, 9147-9160.	2.6	16
23	Modified Quadrupole Ion Trap Mass Spectrometer for Infrared Ion Spectroscopy: Application to Protonated Thiated Uridines. Journal of the American Society for Mass Spectrometry, 2018, 29, 2125-2137.	2.8	20
24	Effects of sodium cationization versus protonation on the conformations and N-glycosidic bond stabilities of sodium cationized Urd and dUrd: solution conformation of [Urd+Na] ⁺ is preserved upon ESI. Physical Chemistry Chemical Physics, 2017, 19, 17637-17652.	2.8	20
25	Gas-Phase Conformations and N-Glycosidic Bond Stabilities of Sodium Cationized 2â€2-Deoxyguanosine and Guanosine: Sodium Cations Preferentially Bind to the Guanine Residue. Journal of Physical Chemistry B, 2017, 121, 4048-4060.	2.6	24
26	Influence of Transition Metal Cationization versus Sodium Cationization and Protonation on the Gas-Phase Tautomeric Conformations and Stability of Uracil: Application to [Ura+Cu] ⁺ and [Ura+Ag] ⁺ . Journal of the American Society for Mass Spectrometry, 2017, 28, 2438-2453.	2.8	7
27	Influence of Linkage Stereochemistry and Protecting Groups on Glycosidic Bond Stability of Sodium Cationized Glycosyl Phosphates. Journal of the American Society for Mass Spectrometry, 2017, 28, 2602-2613.	2.8	8
28	The intrinsic basicity of the phosphate backbone exceeds that of uracil and thymine residues: protonation of the phosphate moiety is preferred over the nucleobase for pdThd and pUrd. Physical Chemistry Chemical Physics, 2017, 19, 30351-30361.	2.8	14
29	N3 and O2 Protonated Conformers of the Cytosine Mononucleotides Coexist in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2017, 28, 1638-1646.	2.8	17
30	IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Studies of Sodium Cationized Thymidine and 5-Methyluridine: Kinetic Trapping During the ESI Desolvation Process Preserves the Solution Structure of [Thd+Na] ⁺ . Journal of the American Society for Mass Spectrometry, 2017, 28, 2423-2437.	2.8	22
31	N3 Protonation Induces Base Rotation of 2′-Deoxyadenosine-5′-monophosphate and Adenosine-5′-monophosphate. Journal of Physical Chemistry B, 2016, 120, 4616-4624.	2.6	34
32	Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2′-Deoxyadenosine and Adenosine. Journal of Physical Chemistry B, 2016, 120, 8892-8904.	2.6	24
33	Tautomerization lowers the activation barriers for N-glycosidic bond cleavage of protonated uridine and 2′-deoxyuridine. Physical Chemistry Chemical Physics, 2016, 18, 24451-24459.	2.8	15
34	Protonation induces base rotation of purine nucleotides pdGuo and pGuo. Physical Chemistry Chemical Physics, 2016, 18, 15081-15090.	2.8	23
35	Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability. Physical Chemistry Chemical Physics, 2016, 18, 16021-16032.	2.8	23
36	Thermodynamics and Mechanisms of Protonated Asparaginyl-Glycine Decomposition. Journal of Physical Chemistry B, 2016, 120, 6525-6545.	2.6	16

#	Article	IF	CITATIONS
37	2,4-Dihydroxy and O2 Protonated Tautomers of dThd and Thd Coexist in the Gas Phase: Methylation Alters Protonation Preferences versus dUrd and Urd. Journal of the American Society for Mass Spectrometry, 2016, 27, 410-421.	2.8	31
38	O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides. Journal of Physical Chemistry B, 2016, 120, 4803-4811.	2.6	25
39	Mechanisms and energetics for N-glycosidic bond cleavage of protonated 2′-deoxyguanosine and guanosine. Physical Chemistry Chemical Physics, 2016, 18, 2968-2980.	2.8	19
40	Interaction of Cu ⁺ with cytosine and formation of i-motif-like C–M ⁺ –C complexes: alkali versus coinage metals. Physical Chemistry Chemical Physics, 2016, 18, 7269-7277.	2.8	46
41	Cationic Noncovalent Interactions: Energetics and Periodic Trends. Chemical Reviews, 2016, 116, 5642-5687.	47.7	126
42	Evaluation of Hybrid Theoretical Approaches for Structural Determination of a Glycine-Linked Cisplatin Derivative via Infrared Multiple Photon Dissociation (IRMPD) Action Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 10980-10987.	2.5	35
43	On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Research, 2015, 43, 5171-5181.	14.5	23
44	Base-Pairing Energies of Protonated Nucleoside Base Pairs of dCyd and m ⁵ dCyd: Implications for the Stability of DNA <i>i</i> -Motif Conformations. Journal of the American Society for Mass Spectrometry, 2015, 26, 1394-1403.	2.8	19
45	Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyadenosine and Adenosine: IRMPD Action Spectroscopy and Theoretical Studies. Journal of Physical Chemistry B, 2015, 119, 2795-2805.	2.6	56
46	Base-Pairing Energies of Protonated Nucleobase Pairs and Proton Affinities of 1-Methylated Cytosines: Model Systems for the Effects of the Sugar Moiety on the Stability of DNA <i>i</i> -Motif Conformations. Journal of Physical Chemistry B, 2015, 119, 1857-1868.	2.6	25
47	N3 and O2 Protonated Tautomeric Conformations of 2′-Deoxycytidine and Cytidine Coexist in the Gas Phase. Journal of Physical Chemistry B, 2015, 119, 5773-5784.	2.6	51
48	Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosines: Implications for the Effects of Halogenation on the Stability of the DNA <i>i</i> -Motif. Journal of the American Society for Mass Spectrometry, 2015, 26, 1469-1482.	2.8	13
49	Diverse mixtures of 2,4-dihydroxy tautomers and O4 protonated conformers of uridine and 2′-deoxyuridine coexist in the gas phase. Physical Chemistry Chemical Physics, 2015, 17, 25978-25988.	2.8	40
50	Infrared multiple photon dissociation action spectroscopy of sodium cationized halouracils: Effects of sodium cationization and halogenation on gas-phase conformation. International Journal of Mass Spectrometry, 2015, 378, 76-85.	1.5	18
51	Intrinsic affinities of alkali metal cations for diaza-18-crown-6: Effects of alkali metal cation size and donor atoms on the binding energies. International Journal of Mass Spectrometry, 2015, 377, 64-72.	1.5	10
52	Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies. Journal of Physical Chemistry B, 2014, 118, 14774-14784.	2.6	45
53	Base-Pairing Energies of Proton-Bound Heterodimers of Cytosine and Modified Cytosines: Implications for the Stability of DNA <i>i</i> Motif Conformations. Journal of the American Chemical Society, 2014, 136, 282-290.	13.7	69
54	Metal Cation Dependence of Interactions with Amino Acids: Bond Dissociation Energies of Rb ⁺ and Cs ⁺ to the Acidic Amino Acids and Their Amide Derivatives. Journal of Physical Chemistry B, 2014, 118, 4300-4314.	2.6	22

#	Article	IF	CITATIONS
55	Alkali Metal Cation Interactions with 15-Crown-5 in the Gas Phase: Revisited. Journal of Physical Chemistry A, 2014, 118, 8088-8097.	2.5	23
56	Alkali metal cation binding affinities of cytosine in the gas phase: revisited. Physical Chemistry Chemical Physics, 2014, 16, 16110.	2.8	18
57	Influence of the d Orbital Occupation on the Structures and Sequential Binding Energies of Pyridine to the Late First-Row Divalent Transition Metal Cations: A DFT Study. Journal of Physical Chemistry A, 2014, 118, 8129-8140.	2.5	16
58	Alkali Metal Cation–Hexacyclen Complexes: Effects of Alkali Metal Cation Size on the Structure and Binding Energy. Journal of Physical Chemistry A, 2014, 118, 5488-5500.	2.5	11
59	IRMPD Action Spectroscopy of Alkali Metal Cation–Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation. Journal of the American Society for Mass Spectrometry, 2013, 24, 1523-1533.	2.8	47
60	Infrared multiple photon dissociation action spectroscopy of alkali metal cation–cyclen complexes: Effects of alkali metal cation size on gas-phase conformation. International Journal of Mass Spectrometry, 2013, 354-355, 346-355.	1.5	5
61	Base-Pairing Energies of Proton-Bound Homodimers Determined by Guided Ion Beam Tandem Mass Spectrometry: Application to Cytosine and 5-Substituted Cytosines. Analytical Chemistry, 2013, 85, 11000-11006.	6.5	32
62	Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Rb ⁺ and Cs ⁺ to Met, Phe, Tyr, and Trp. Journal of Physical Chemistry B, 2013, 117, 3771-3781.	2.6	46
63	Infrared Multiple Photon Dissociation Action Spectroscopy of Deprotonated DNA Mononucleotides: Gas-Phase Conformations and Energetics. Journal of Physical Chemistry A, 2013, 117, 1319-1335.	2.5	51
64	Energy-Resolved Collision-Induced Dissociation Studies of 1,10-Phenanthroline Complexes of the Late First-Row Divalent Transition Metal Cations: Determination of the Third Sequential Binding Energies. Journal of Physical Chemistry A, 2013, 117, 4316-4330.	2.5	23
65	Infrared Multiple Photon Dissociation Action Spectroscopy of Proton-Bound Dimers of Cytosine and Modified Cytosines: Effects of Modifications on Gas-Phase Conformations. Journal of Physical Chemistry B, 2013, 117, 14191-14201.	2.6	58
66	Infrared Multiple Photon Dissociation Action Spectroscopy of Deprotonated RNA Mononucleotides: Gas-Phase Conformations and Energetics. Journal of Physical Chemistry A, 2013, 117, 10634-10649.	2.5	34
67	Silver Cation Affinities of Monomeric Building Blocks of Polyethers and Polyphenols Determined by Guided Ion Beam Tandem Mass Spectrometry. Journal of Physical Chemistry A, 2013, 117, 8274-8284.	2.5	6
68	Energyâ€Resolved Collisionâ€Induced Dissociation Studies of 2,2′â€Bipyridine Complexes of the Late Firstâ€I Divalent Transitionâ€Metal Cations: Determination of the Thirdâ€Sequential Binding Energies. ChemPlusChem, 2013, 78, 1109-1123.	Row 2.8	9
69	Thermochemistry of Non-Covalent Ion–Molecule Interactions. Mass Spectrometry, 2013, 2, S0005-S0005.	0.6	3
70	Alkali metal cation interactions with 12-crown-4 in the gas phase: Revisited. International Journal of Mass Spectrometry, 2012, 330-332, 16-26.	1.5	24
71	Alkali metal cation–cyclen complexes: Effects of alkali metal cation size on the structure and binding energy. International Journal of Mass Spectrometry, 2012, 330-332, 27-34.	1.5	14
72	Protonation Preferentially Stabilizes Minor Tautomers of the Halouracils: IRMPD Action Spectroscopy and Theoretical Studies. Journal of the American Society for Mass Spectrometry, 2012, 23, 1469-1478.	2.8	30

#	Article	IF	CITATIONS
73	Structural and Energetic Effects in the Molecular Recognition of Acetylated Amino Acids by 18-Crown-6. Journal of the American Society for Mass Spectrometry, 2012, 23, 2020-2030.	2.8	15
74	Structural and Energetic Effects in the Molecular Recognition of Amino Acids by 18-Crown-6. Journal of the American Chemical Society, 2012, 134, 5863-5875.	13.7	61
75	Re-Evaluation of the Proton Affinity of 18-Crown-6 Using Competitive Threshold Collision-Induced Dissociation Techniques. Analytical Chemistry, 2012, 84, 7570-7577.	6.5	11
76	Structural and Energetic Effects in the Molecular Recognition of Protonated Peptidomimetic Bases by 18-Crown-6. Journal of the American Chemical Society, 2012, 134, 2313-2324.	13.7	63
77	Tautomerization in the formation and collision-induced dissociation of alkali metal cation-cytosine complexes. Physical Chemistry Chemical Physics, 2012, 14, 4517.	2.8	25
78	Thermochemistry of Alkali Metal Cation Interactions with Histidine: Influence of the Side Chain. Journal of Physical Chemistry A, 2012, 116, 11823-11832.	2.5	29
79	Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Cs ⁺ to Gly, Pro, Ser, Thr, and Cys. Journal of Physical Chemistry A, 2012, 116, 3989-3999.	2.5	51
80	Noncovalent Interactions of Zn ⁺ with <i>N</i> -Donor Ligands (Pyridine, 4,4′-Dipyridyl,) Tj ETQq(Journal of Physical Chemistry A, 2012, 116, 1319-1332.	0 0 0 rgBT 2.5	/Overlock 10 16
81	Infrared multiple photon dissociation action spectroscopy of sodiated uracil and thiouracils: Effects of thioketo-substitution on gas-phase conformation. International Journal of Mass Spectrometry, 2011, 308, 191-202.	1.5	38
82	Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Triethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure. Journal of the American Society for Mass Spectrometry, 2011, 22, 1862-71.	2.8	15
83	Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure. Journal of the American Society for Mass Spectrometry, 2011, 22, 81-92.	2.8	24
84	Infrared multiple photon dissociation action spectroscopy of protonated uracil and thiouracils: Effects of thioketo-substitution on gas-phase conformation. International Journal of Mass Spectrometry, 2010, 297, 139-151.	1.5	36
85	Infrared multiple photon dissociation spectroscopy of cationized cysteine: Effects of metal cation size on gas-phase conformation. International Journal of Mass Spectrometry, 2010, 297, 9-17.	1.5	71
86	Inductive effects on cation–π interactions: Structures and bond dissociation energies of alkali metal cation–halobenzene complexes. International Journal of Mass Spectrometry, 2009, 283, 35-47.	1.5	23
87	Modeling Metal Cation-Phosphate Interactions in Nucleic Acids: Activated Dissociation of Mg ⁺ , Al ⁺ , Cu ⁺ , and Zn ⁺ Complexes of Triethyl Phosphate. Journal of the American Chemical Society, 2009, 131, 10918-10928.	13.7	16
88	Noncovalent Interactions of Ni ⁺ with N-Donor Ligands (Pyridine, 4,4′-Dipyridyl,) Tj ETQq0 0 0 rgl Journal of Physical Chemistry A, 2009, 113, 4534-4548.	BT /Overlo 2.5	ock 10 Tf 50 1 15
89	A simple model for metal cation-phosphate interactions in nucleic acids in the gas phase: Alkali metal cations and trimethyl phosphate. Journal of the American Society for Mass Spectrometry, 2008, 19, 305-314.	2.8	24
90	Statistical Rate Theory and Kinetic Energy-Resolved Ion Chemistry: Theory and Applications. Journal of Physical Chemistry A, 2008, 112, 10071-10085.	2.5	110

6

#	Article	IF	CITATIONS
91	Infrared Multiphoton Dissociation Spectroscopy of Cationized Serine:  Effects of Alkali-Metal Cation Size on Gas-Phase Conformation. Journal of Physical Chemistry A, 2008, 112, 2248-2257.	2.5	139
92	Dipole Effects on Cationâ~ï̃€ Interactions: Absolute Bond Dissociation Energies of Complexes of Alkali Metal Cations to <i>N</i> -methylaniline and <i>N</i> , <i>N</i> dimethylaniline. Journal of Physical Chemistry A, 2008, 112, 7996-8008.	2.5	36
93	Bond Dissociation Energies and Equilibrium Structures of Cu ⁺ (MeOH) <i>_x</i> , <i>x</i> = 1â^'6, in the Gas Phase:  Competition between Solvation of the Metal Ion and Hydrogen-Bonding Interactions. Journal of Physical Chemistry A, 2008, 112. 388-401.	2.5	19
94	Infrared Multiphoton Dissociation Spectroscopy of Cationized Threonine:  Effects of Alkali-Metal Cation Size on Gas-Phase Conformation. Journal of Physical Chemistry A, 2008, 112, 2258-2267.	2.5	116
95	Modeling Metal Cationâ^'Phosphate Interactions in Nucleic Acids in the Gas Phase via Alkali Metal Cationâ^'Triethyl Phosphate Complexes. Journal of Physical Chemistry A, 2007, 111, 13521-13527.	2.5	15
96	Influence of the d orbital occupation on the nature and strength of copper cation–΀ interactions: threshold collision-induced dissociation and theoretical studies. Physical Chemistry Chemical Physics, 2007, 9, 5902.	2.8	48
97	Cation-ï€ interactions with a ï€-excessive nitrogen heterocycle: Structures and absolute binding energies of alkali metal cation–pyrrole complexes. International Journal of Mass Spectrometry, 2007, 267, 233-247.	1.5	19
98	Probing the potential energy landscape for dissociation of protonated indole via threshold collision-induced dissociation and theoretical studies. International Journal of Mass Spectrometry, 2007, 265, 388-400.	1.5	10
99	Noncovalent Interactions of Cu+withN-Donor Ligands (Pyridine, 4,4-Dipyridyl, 2,2-Dipyridyl, and) Tj ETQq1 1 0.784 Chemistry A, 2007, 111, 3465-3479.	1314 rgBT 2.5	/Overlock 47
100	A critical evaluation of the experimental and theoretical determination of lithium cation affinities. International Journal of Mass Spectrometry, 2007, 267, 167-182.	1.5	80
101	Sodium Cation Affinities of MALDI Matrices Determined by Guided Ion Beam Tandem Mass Spectrometry:Â Application to Benzoic Acid Derivativesâ€. Journal of Physical Chemistry A, 2006, 110, 1426-1437.	2.5	15
102	Influence of Thioketo Substitution on the Properties of Uracil and Its Noncovalent Interactions with Alkali Metal Ions: Threshold Collision-Induced Dissociation and Theoretical Studiesâ€. Journal of Physical Chemistry A, 2006, 110, 1455-1468.	2.5	37
103	Specificity of Human Thymine DNA Glycosylase Depends onN-Glycosidic Bond Stability. Journal of the American Chemical Society, 2006, 128, 12510-12519.	13.7	149
104	Influence of methylation on the properties of uracil and its noncovalent interactions with alkali metal ions. International Journal of Mass Spectrometry, 2005, 241, 225-242.	1.5	31
105	Cationâ^'Ï€ Interactions with a Model for the Side Chain of Tryptophan:Â Structures and Absolute Binding Energies of Alkali Metal Cationâ^'Indole Complexesâ€. Journal of Physical Chemistry A, 2005, 109, 11539-11550.	2.5	71
106	Solvation of copper ions by imidazole: Structures and sequential binding energies of Cu+(imidazole)x, x = 1–4. Competition between ion solvation and hydrogen bonding. Physical Chemistry Chemical Physics, 2005, 7, 1014-1025.	2.8	32
107	Influence of s and d Orbital Occupation on the Binding of Metal Ions to Imidazole. Journal of Physical Chemistry A, 2004, 108, 6385-6396.	2.5	40
108	Cationâ~ïi€ Interactions:Â Structures and Energetics of Complexation of Na+and K+with the Aromatic Amino Acids, Phenylalanine, Tyrosine, and Tryptophan. Journal of the American Chemical Society, 2004, 126, 14600-14610.	13.7	205

#	ARTICLE	IF	CITATIONS
109	supplementary information (ESI) available: tables of MP2(full)/6-31G* optimized geometries, rotational constants, and scaled vibrational frequencies for isolated monomers of the six low-energy tautomers of cytosine and corresponding transition states for unimolecular tautomerization; B3LYP/6-31G* optimized geometries, rotational constants, and scaled vibrational frequencies for six	2.8	76
110	Influence of Halogenation on the Properties of Uracil and Its Noncovalent Interactions with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. Journal of the American Chemical Society, 2004, 126, 16217-16226.	13.7	64
111	A Thermodynamic "Vocabulary―for Metal Ion Interactions in Biological Systems. Accounts of Chemical Research, 2004, 37, 989-998.	15.6	137
112	Influence of substituents on cation–π interactions. International Journal of Mass Spectrometry, 2003, 222, 431-450.	1.5	68
113	Cation-π interactions with a model for an extended π network. International Journal of Mass Spectrometry, 2003, 227, 1-20.	1.5	48
114	Influence of substituents on cation-Ï€ interactions. 3 International Journal of Mass Spectrometry, 2003, 227, 339-360.	1.5	58
115	Gas Phase Coordination Chemistry. , 2003, , 141-158.		5
116	Influence of d Orbital Occupation on the Binding of Metal Ions to Adenine. Journal of the American Chemical Society, 2002, 124, 2678-2691.	13.7	95
117	Influence of Substituents on Cationâ^'ï€ Interactions. 1. Absolute Binding Energies of Alkali Metal Cationâ^'Toluene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies. Journal of Physical Chemistry A, 2002, 106, 5529-5539.	2.5	80
118	Sigma versus Pi Interactions in Alkali Metal Ion Binding to Azoles:Â Threshold Collision-Induced Dissociation and ab Initio Theory Studies. Journal of Physical Chemistry A, 2002, 106, 4277-4289.	2.5	98
119	Influence of Substituents on Cationâ^'i€ Interactions. 2. Absolute Binding Energies of Alkali Metal Cationâ^'Fluorobenzene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies. Journal of Physical Chemistry A, 2002, 106, 9092-9103.	2.5	59
120	The Influence of Substituents on Cationâ^ï̃€ Interactions. 4. Absolute Binding Energies of Alkali Metal Cationâ^'Phenol Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studiesâ€,â€j. Journal of Physical Chemistry A, 2002, 106, 9718-9728.	2.5	80
121	Solvation of copper ions by acetone. Structures and sequential binding energies of Cu+(acetone) x , x = 1–4 from collision-induced dissociation and theoretical studies. Journal of the American Society for Mass Spectrometry, 2002, 13, 453-468.	2.8	30
122	Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Methylpyridinesâ€. Journal of Physical Chemistry A, 2001, 105, 2374-2383.	2.5	98
123	Substituent Effects in the Binding of Alkali Metal Ions to Pyridines Studied by Threshold Collision-Induced Dissociation and ab Initio Theory:Â The Aminopyridines. Journal of Physical Chemistry A, 2001, 105, 8145-8153.	2.5	38
124	Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory. Journal of Physical Chemistry A, 2001, 105, 9883-9892.	2.5	53
125	Collision-Induced Dissociation and Theoretical Studies of Na+â^'Acetonitrile Complexes. Journal of Physical Chemistry A, 2001, 105, 11057-11068.	2.5	30
126	Solvation of Copper Ions by Acetonitrile. Structures and Sequential Binding Energies of Cu+(CH3CN)x,x= 1â^'5, from Collision-Induced Dissociation and Theoretical Studies. Journal of Physical Chemistry A, 2001, 105, 11351-11364.	2.5	56

#	Article	IF	CITATIONS
127	Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation. Mass Spectrometry Reviews, 2000, 19, 215-247.	5.4	333
128	Absolute alkali metal ion binding affinities of several azines determined by threshold collision-induced dissociation and ab initio theory. International Journal of Mass Spectrometry, 2000, 195-196, 439-457.	1.5	82
129	Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory. Journal of the American Chemical Society, 2000, 122, 10969-10978.	13.7	112
130	An Absolute Sodium Cation Affinity Scale:  Threshold Collision-Induced Dissociation Experiments and ab Initio Theory. Journal of Physical Chemistry A, 2000, 104, 2238-2247.	2.5	246
131	Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. Journal of the American Chemical Society, 2000, 122, 8548-8558.	13.7	223
132	Noncovalent metal–ligand bond energies as studied by threshold collisionâ€induced dissociation. Mass Spectrometry Reviews, 2000, 19, 215-247.	5.4	4
133	Absolute alkali metal ion binding affinities of several azoles determined by threshold collision-induced dissociation. International Journal of Mass Spectrometry, 1999, 185-187, 359-380.	1.5	81
134	Absolute Binding Energies of Sodium Ions to Short Chain Alcohols, CnH2n+2O,n= 1â^4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory. Journal of Physical Chemistry A, 1999, 103, 4955-4963.	2.5	75
135	Statistical modeling of competitive threshold collision-induced dissociation. Journal of Chemical Physics, 1998, 109, 1787-1800.	3.0	236
136	Guided ion beam studies of the reactions of Vn+ (n=2–17) with O2: Bond energies and dissociation pathways. Journal of Chemical Physics, 1998, 108, 9339-9350.	3.0	64
137	Statistical modeling of collision-induced dissociation thresholds. Journal of Chemical Physics, 1997, 106, 4499-4508.	3.0	441
138	Collision-Induced Dissociation Measurements on Li+(H2O)n,n= 1â^'6:Â The First Direct Measurement of the Li+â^'OH2Bond Energy. Journal of Physical Chemistry A, 1997, 101, 1238-1249.	2.5	198
139	Absolute Binding Energies of Lithium Ions to Short Chain Alcohols, CnH2n+2O,n= 1â^'4, Determined by Threshold Collision-Induced Dissociation. Journal of Physical Chemistry A, 1997, 101, 2614-2625.	2.5	108
140	Site-specific lithium ion attachment directs low-energy dissociation pathways of dinucleotides in the gas phase. Application to nucleic acid sequencing by mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1997, 161, 193-216.	1.8	16
141	Site-specific protonation directs low-energy dissociation pathways of dinucleotides in the gas phase. International Journal of Mass Spectrometry and Ion Processes, 1995, 148, 1-23.	1.8	60
142	Low-energy collision-induced dissociation of deprotonated dinucleotides: determination of the energetically favored dissociation pathways and the relative acidities of the nucleic acid bases. International Journal of Mass Spectrometry and Ion Processes, 1994, 137, 121-149.	1.8	123