Sebastian Kobold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5082645/publications.pdf Version: 2024-02-01

		117625	102487
104	5,177	34	66
papers	citations	h-index	g-index
113	113	113	7964
all docs	docs citations	times ranked	citing authors

SEBASTIAN KOROLD

#	Article	IF	CITATIONS
1	Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. Nature Communications, 2022, 13, 318.	12.8	25
2	Prodrug-Activating Chain Exchange (PACE) converts targeted prodrug derivatives to functional bi- or multispecific antibodies. Biological Chemistry, 2022, 403, 495-508.	2.5	6
3	Enhanced Chimeric Antigen Receptor T Cell Therapy through Co-Application of Synergistic Combination Partners. Biomedicines, 2022, 10, 307.	3.2	9
4	Flow cytometry detection and quantification of CAR T cells into solid tumors. Methods in Cell Biology, 2022, 167, 99-122.	1.1	2
5	Novel systemic treatment approaches for metastatic pancreatic cancer. Expert Opinion on Investigational Drugs, 2022, 31, 249-262.	4.1	12
6	An In Vivo Inflammatory Loop Potentiates KRAS Blockade. Biomedicines, 2022, 10, 592.	3.2	4
7	Design and Evaluation of TIM-3-CD28 Checkpoint Fusion Proteins to Improve Anti-CD19 CAR T-Cell Function. Frontiers in Immunology, 2022, 13, 845499.	4.8	8
8	The Neurokinin-1 Receptor Is a Target in Pediatric Rhabdoid Tumors. Current Oncology, 2022, 29, 94-110.	2.2	10
9	Utilizing chemokines in cancer immunotherapy. Trends in Cancer, 2022, 8, 670-682.	7.4	50
10	Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. Journal of Clinical Investigation, 2022, 132, .	8.2	22
11	CAR T Cells Targeting Membrane-Bound Hsp70 on Tumor Cells Mimic Hsp70-Primed NK Cells. Frontiers in Immunology, 2022, 13, .	4.8	10
12	Abstract 570: Developing a novel adaptor CAR-T cell platform based on the recognition of the P329G Fc mutation in therapeutic lgG1 antibodies for adoptive T cell therapy. Cancer Research, 2022, 82, 570-570.	0.9	0
13	ESCRT machinery: role of membrane repair mechanisms in escaping cell death. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	3
14	A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia, 2021, 35, 2243-2257.	7.2	24
15	Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers, 2021, 13, 477.	3.7	34
16	Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy. , 2021, 9, e000832.		23
17	CXCR6 deficiency impairs cancer vaccine efficacy and CD8 ⁺ resident memory T-cell recruitment in head and neck and lung tumors. , 2021, 9, e001948.		41
18	CAR TÂcell therapy in solid tumors: aÂshort review. Memo - Magazine of European Medical Oncology, 2021, 14, 143-149.	0.5	17

Sebastian Kobold

#	Article	IF	CITATIONS
19	Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.	2.3	4
20	Defective Interfering Genomes and the Full-Length Viral Genome Trigger RIG-I After Infection With Vesicular Stomatitis Virus in a Replication Dependent Manner. Frontiers in Immunology, 2021, 12, 595390.	4.8	16
21	An In Sitro Assay to Predict Primary Resistance to PD-1 Blockade. Trends in Molecular Medicine, 2021, 27, 297-298.	6.7	0
22	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
23	Broad T Cell Targeting of Structural Proteins After SARS-CoV-2 Infection: High Throughput Assessment of T Cell Reactivity Using an Automated Interferon Gamma Release Assay. Frontiers in Immunology, 2021, 12, 688436.	4.8	26
24	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	22.5	80
25	Augmenting anti-CD19 and anti-CD22 CAR T-cell function using PD-1-CD28 checkpoint fusion proteins. Blood Cancer Journal, 2021, 11, 108.	6.2	17
26	Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Science Advances, 2021, 7, .	10.3	56
27	Interleukins in cancer: from biology to therapy. Nature Reviews Cancer, 2021, 21, 481-499.	28.4	318
28	Long non-coding RNAs in cancer stem cells. Translational Oncology, 2021, 14, 101134.	3.7	25
29	CXCR6 positions cytotoxic TÂcells to receive critical survival signals in the tumor microenvironment. Cell, 2021, 184, 4512-4530.e22.	28.9	180
30	Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Science Translational Medicine, 2021, 13, eabc8188.	12.4	48
31	Paralysis of the cytotoxic granule machinery is a new cancer immune evasion mechanism mediated by chitinase 3-like-1. , 2021, 9, e003224.		12
32	NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells, 2021, 10, 3390.	4.1	17
33	Prolonged time to treatment initiation in advanced pancreatic cancer patients has no major effect on treatment outcome: a retrospective cohort study controlled for lead time bias and waiting time paradox. Journal of Cancer Research and Clinical Oncology, 2020, 146, 391-399.	2.5	13
34	Challenges in Clinical Trial Design for T Cellâ€Based Cancer Immunotherapy. Clinical Pharmacology and Therapeutics, 2020, 107, 47-49.	4.7	9
35	Determinants of response and resistance to CAR T cell therapy. Seminars in Cancer Biology, 2020, 65, 80-90.	9.6	59
36	RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia, 2020, 34, 1017-1026.	7.2	33

SEBASTIAN KOBOLD

#	Article	IF	CITATIONS
37	Sixth Immunotherapy of Cancer conference (ITOC): advances and perspectives—a meeting report. , 2020, 8, e000268.		0
38	Interleukin-1β und pro-tumorale Inflammation – Zentrale Faktoren bei der Entstehung von Krebserkrankungen. Oncology Research and Treatment, 2020, 43, 6-12.	1.2	1
39	Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood, 2020, 136, 1407-1418.	1.4	91
40	Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nature Communications, 2020, 11, 3196.	12.8	43
41	Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clinical Cancer Research, 2019, 25, 5890-5900.	7.0	31
42	Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. , 2019, 7, 288.		22
43	P329G-CAR-J: a novel Jurkat-NFAT-based CAR-T reporter system recognizing the P329G Fc mutation. Protein Engineering, Design and Selection, 2019, 32, 207-218.	2.1	6
44	Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Science Advances, 2019, 5, eaav4275.	10.3	139
45	Advances in cancer immunotherapy 2019 – latest trends. Journal of Experimental and Clinical Cancer Research, 2019, 38, 268.	8.6	401
46	Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells, 2019, 8, 472.	4.1	122
47	Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal of Molecular Sciences, 2019, 20, 1283.	4.1	296
48	Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs, 2019, 11, 621-631.	5.2	38
49	Inflammation: a common contributor to cancer, aging, and cardiovascular diseases—expanding the concept of cardio-oncology. Cardiovascular Research, 2019, 115, 824-829.	3.8	101
50	Interleukin-37 Inhibits Colon Carcinogensis During Chronic Colitis. Frontiers in Immunology, 2019, 10, 2632.	4.8	10
51	Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Translational Oncology, 2019, 12, 350-360.	3.7	27
52	Innate and adaptive immunity combined for cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1087-1088.	7.1	3
53	Teaching an old dog new tricks: next-generation CAR T cells. British Journal of Cancer, 2019, 120, 26-37.	6.4	240
54	High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. British Journal of Cancer, 2019, 120, 79-87.	6.4	36

SEBASTIAN KOBOLD

#	Article	IF	CITATIONS
55	Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy, 2019, 11, 201-213.	2.0	108
56	Innate Immune Stimulation in Cancer Therapy. Hematology/Oncology Clinics of North America, 2019, 33, 215-231.	2.2	8
57	Targeting interleukin-22 for cancer therapy. Human Vaccines and Immunotherapeutics, 2018, 14, 2012-2015.	3.3	37
58	Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell–driven tumor immunity. Science, 2018, 359, 1537-1542.	12.6	323
59	Can we use interleukin-1β blockade for lung cancer treatment?. Translational Lung Cancer Research, 2018, 7, S160-S164.	2.8	19
60	Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood, 2018, 132, 2484-2494.	1.4	73
61	PD1-CD28 Fusion Protein Enables CD4+ T Cell Help for Adoptive T Cell Therapy in Models of Pancreatic Cancer and Non-hodgkin Lymphoma. Frontiers in Immunology, 2018, 9, 1955.	4.8	24
62	IL-22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiological Reports, 2018, 6, e13817.	1.7	17
63	Rationale for Combining Bispecific T Cell Activating Antibodies With Checkpoint Blockade for Cancer Therapy. Frontiers in Oncology, 2018, 8, 285.	2.8	89
64	Dying cells expose a nuclear antigen cross-reacting with anti-PD-1 monoclonal antibodies. Scientific Reports, 2018, 8, 8810.	3.3	13
65	Nlrp3-dependent IL-1 \hat{l}^2 inhibits CD103+ dendritic cell differentiation in the gut. JCI Insight, 2018, 3, .	5.0	22
66	Abstract 185: G-protein Coupled Receptor 55 Deficiency Promotes Atherosclerosis and Inflammation in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
67	Using Antigen-Specific B Cells to Combine Antibody and T Cell–Based Cancer Immunotherapy. Cancer Immunology Research, 2017, 5, 730-743.	3.4	23
68	Cancer cells induce interleukin-22 production from memory CD4 ⁺ T cells via interleukin-1 to promote tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12994-12999.	7.1	115
69	Enabling T Cell Recruitment to Tumours as a Strategy for Improving Adoptive T Cell Therapy. European Oncology and Haematology, 2017, 13, 66.	0.0	8
70	Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45. Journal of Immunology Research, 2016, 2016, 1-11.	2.2	45
71	TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations. Protein Engineering, Design and Selection, 2016, 29, 467-475.	2.1	22
72	Interleukin-22 is elevated in lavage from patients with lung cancer and other pulmonary diseases. BMC Cancer, 2016, 16, 409.	2.6	19

SEBASTIAN KOBOLD

#	Article	IF	CITATIONS
73	A novel TLR7 agonist reverses NK cell anergy and cures RMA-S lymphoma-bearing mice. Oncolmmunology, 2016, 5, e1189051.	4.6	22
74	C-C chemokine receptor type-4 transduction of T cells enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of adoptive T cell transfer. Oncolmmunology, 2016, 5, e1105428.	4.6	58
75	Dual-targeting triplebody 33-3-19 mediates selective lysis of biphenotypic CD19+ CD33+ leukemia cells. Oncotarget, 2016, 7, 22579-22589.	1.8	19
76	Immunotherapy in Tumors. Deutsches Ärzteblatt International, 2015, 112, 809-15.	0.9	31
77	Impact of a New Fusion Receptor on PD-1–Mediated Immunosuppression in Adoptive T Cell Therapy. Journal of the National Cancer Institute, 2015, 107, .	6.3	96
78	Strategies to relieve immunosuppression in pancreatic cancer. Immunotherapy, 2015, 7, 363-376.	2.0	30
79	Targeted activation of melanoma differentiation-associated protein 5 (MDA5) for immunotherapy of pancreatic carcinoma. Oncolmmunology, 2015, 4, e1029698.	4.6	36
80	Selective Bispecific T Cell Recruiting Antibody and Antitumor Activity of Adoptive T Cell Transfer. Journal of the National Cancer Institute, 2015, 107, 364.	6.3	34
81	Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunology, Immunotherapy, 2014, 63, 1151-1162.	4.2	17
82	Modes of action of TLR7 agonists in cancer therapy. Immunotherapy, 2014, 6, 1085-1095.	2.0	66
83	RIC-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death and Differentiation, 2014, 21, 1825-1837.	11.2	151
84	Toll-Like Receptor 4–Induced IL-22 Accelerates Kidney Regeneration. Journal of the American Society of Nephrology: JASN, 2014, 25, 978-989.	6.1	122
85	The macrophage migration inhibitory factor (MIF)-homologue D-dopachrome tautomerase is a therapeutic target in a murine melanoma model. Oncotarget, 2014, 5, 103-107.	1.8	20
86	T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell. Oncotarget, 2014, 5, 6466-6483.	1.8	6
87	Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice. Blood, 2013, 122, 2591-2599.	1.4	6
88	Interleukin-22 Is Frequently Expressed in Small- and Large-Cell Lung Cancer and Promotes Growth in Chemotherapy-Resistant Cancer Cells. Journal of Thoracic Oncology, 2013, 8, 1032-1042.	1.1	62
89	Longitudinal Analysis of Tetanus- and Influenza-Specific IgG Antibodies in Myeloma Patients. Clinical and Developmental Immunology, 2012, 2012, 1-9.	3.3	9
90	Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica, 2011, 96, 1512-1520.	3.5	52

Sebastian Kobold

#	Article	IF	CITATIONS
91	Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation. Clinical and Developmental Immunology, 2011, 2011, 1-10.	3.3	9
92	Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica, 2010, 95, 785-793.	3.5	87
93	An optimized assay for the enumeration of antigen-specific memory B cells in different compartments of the human body. Journal of Immunological Methods, 2010, 358, 56-65.	1.4	46
94	The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients. Experimental Hematology, 2010, 38, 860-867.	0.4	72
95	Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leukemia Research, 2010, 34, 1647-1655.	0.8	33
96	Isolated Limb Perfusion with Melphalan for the Treatment of Intractable Primary Cutaneous Diffuse Large B-Cell Lymphoma Leg Type. Acta Haematologica, 2010, 123, 179-181.	1.4	16
97	Cryptic Epitopes Induce High-Titer Humoral Immune Response in Patients with Cancer. Journal of Immunology, 2010, 185, 3095-3102.	0.8	10
98	Prognostic and Diagnostic Value of Spontaneous Tumor-Related Antibodies. Clinical and Developmental Immunology, 2010, 2010, 1-8.	3.3	24
99	FLT3 - ITD positive acute lymphocytic leukemia, does it impact on disease´s course?. Turkish Journal of Haematology, 2010, 27, 133-134.	0.5	1
100	Autoantibodies against tumor-related antigens: Incidence and biologic significance. Human Immunology, 2010, 71, 643-651.	2.4	47
101	Intraperitoneal VEGF Inhibition Using Bevacizumab: A Potential Approach for the Symptomatic Treatment of Malignant Ascites?. Oncologist, 2009, 14, 1242-1251.	3.7	91
102	Evolving role of cetuximab in the treatment of colorectal cancer. Cancer Management and Research, 2009, 1, 79-88.	1.9	5
103	Neue Strategien für die onkologische Therapie: Interleukine im Fokus. , 0, , .		0
104	Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Frontiers in Immunology, 0, 13, .	4.8	7