Leila Alibabaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50823/publications.pdf

Version: 2024-02-01

22 papers 1,479 citations

567281 15 h-index 24 g-index

26 all docs

26 docs citations

times ranked

26

1854 citing authors

#	Article	IF	CITATIONS
1	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	13.7	317
2	Solar water splitting in a molecular photoelectrochemical cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20008-20013.	7.1	203
3	Visible photoelectrochemical water splitting into H ₂ and O ₂ in a dye-sensitized photoelectrosynthesis cell. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5899-5902.	7.1	136
4	Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels: let the molecules do the work. Journal of Materials Chemistry A, 2013, 1, 4133.	10.3	115
5	A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water. Journal of the American Chemical Society, 2016, 138, 16745-16753.	13.7	100
6	An aqueous, organic dye derivatized SnO ₂ /TiO ₂ core/shell photoanode. Journal of Materials Chemistry A, 2016, 4, 2969-2975.	10.3	89
7	Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO ₂ . Journal of the American Chemical Society, 2016, 138, 4426-4438.	13.7	84
8	Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9554-9562.	8.0	72
9	Atomic Layer Deposition of TiO ₂ on Mesoporous nanoITO: Conductive Core–Shell Photoanodes for Dye-Sensitized Solar Cells. Nano Letters, 2014, 14, 3255-3261.	9.1	71
10	Synthesis and photophysical characterization of porphyrin and porphyrinâ€"Ru(ii) polypyridyl chromophoreâ€"catalyst assemblies on mesoporous metal oxides. Chemical Science, 2014, 5, 3115.	7.4	56
11	Enabling Efficient Creation of Long-Lived Charge-Separation on Dye-Sensitized NiO Photocathodes. ACS Applied Materials & Diversal Sensitized NiO Photocathodes.	8.0	45
12	Chromophore-Catalyst Assembly for Water Oxidation Prepared by Atomic Layer Deposition. ACS Applied Materials & Deposition. ACS Applied Materials & Deposition. ACS Applied Materials & Deposition of the Company of the	8.0	32
13	Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19529-19534.	8.0	31
14	Phosphonate-Derivatized Porphyrins for Photoelectrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3853-3860.	8.0	29
15	Ultrafast, Light-Induced Electron Transfer in a Perylene Diimide Chromophore-Donor Assembly on TiO ₂ . Journal of Physical Chemistry Letters, 2015, 6, 4736-4742.	4.6	20
16	Electrocatalysis on Oxide-Stabilized, High-Surface Area Carbon Electrodes. ACS Catalysis, 2013, 3, 1850-1854.	11.2	14
17	Growth and Post-Deposition Treatments of SrTiO ₃ Films for Dye-Sensitized Photoelectrosynthesis Cell Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12282-12290.	8.0	12
18	Interfacial electron transfer yields in dye-sensitized NiO photocathodes correlated to excited-state dipole orientation of ruthenium chromophores. Canadian Journal of Chemistry, 2018, 96, 865-874.	1.1	11

#	Article	IF	CITATIONS
19	Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO⟨sub⟩2⟨/sub⟩. Journal of Physical Chemistry C, 2018, 122, 13017-13026.	3.1	10
20	Light-Driven Water Splitting in the Dye-Sensitized Photoelectrosynthesis Cell. Green Chemistry and Sustainable Technology, 2018, , 229-257.	0.7	6
21	Dye-Sensitized Nonstoichiometric Strontium Titanate Core–Shell Photocathodes for Photoelectrosynthesis Applications. ACS Applied Materials & Interfaces, 2021, 13, 15261-15269.	8.0	5
22	Impedance spectroscopy study of SrTiO3 pulse laser deposited photoelectrodes. Thin Solid Films, 2018, 655, 27-33.	1.8	2