Sarah W Fitzpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic rescue to the rescue. Trends in Ecology and Evolution, 2015, 30, 42-49.	8.7	591
2	The crucial role of genome-wide genetic variation in conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	196
3	The Exciting Potential and Remaining Uncertainties of Genetic Rescue. Trends in Ecology and Evolution, 2019, 34, 1070-1079.	8.7	151
4	Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Molecular Ecology, 2016, 25, 2176-2194.	3.9	114
5	Genomic and Fitness Consequences of Genetic Rescue in Wild Populations. Current Biology, 2020, 30, 517-522.e5.	3.9	81
6	Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of <scp>T</scp> rinidadian guppies. Evolutionary Applications, 2016, 9, 879-891.	3.1	62
7	Genomics for Genetic Rescue. Population Genomics, 2019, , 437-471.	0.5	46
8	Parallelism Isn't Perfect: Could Disease and Flooding Drive a Life-History Anomaly in Trinidadian Guppies?. American Naturalist, 2014, 183, 290-300.	2.1	36
9	An experimental test of alternative population augmentation scenarios. Conservation Biology, 2018, 32, 838-848.	4.7	24
10	Does gene flow aggravate or alleviate maladaptation to environmental stress in small populations?. Evolutionary Applications, 2019, 12, 1402-1416.	3.1	21
11	A critical comparison of integral projection and matrix projection models for demographic analysis. Ecological Monographs, 2021, 91, e01447.	5.4	21
12	Sex, Mitochondria, and Genetic Rescue. Trends in Ecology and Evolution, 2016, 31, 96-99.	8.7	13
13	Gene Flow Constrains and Facilitates Genetically Based Divergence in Quantitative Traits. Copeia, 2017, 105, 462-474.	1.3	13
14	Genomeâ€wide diversity and habitat underlie fineâ€scale phenotypic differentiation in the rainbow darter (Etheostoma caeruleum). Evolutionary Applications, 2021, 14, 498-512.	3.1	9
15	Raptureâ€ready darters: Choice of reference genome and genotyping method (wholeâ€genome or sequence) 1 2021, 21, 404-420.	j ETQq1 1 4.8	0.784314 rg <mark>B</mark> 9
16	Fire Does Not Strongly Affect Genetic Diversity or Structure of a Common Treefrog in the Endangered Florida Scrub. Journal of Heredity, 2018, 109, 243-252.	2.4	7
17	Recent evolutionary history predicts population but not ecosystemâ€level patterns. Ecology and Evolution, 2019, 9, 14442-14452.	1.9	2
18	Reproductive benefits associated with dispersal in headwater populations of Trinidadian guppies (<i>Poecilia reticulata</i>). Ecology Letters, 2022, 25, 344-354.	6.4	1

#	Article	IF	CITATIONS
19	Testing Demographic Methods Using Field Studies of Five Dissimilar Species. Bulletin of the Ecological Society of America, 2021, 102, e01870.	0.2	0