Paul J Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080957/publications.pdf

Version: 2024-02-01

80

all docs

		172457	161849
56	5,350	29	54
papers	citations	h-index	g-index

80

times ranked

6629

citing authors

80

docs citations

#	Article	IF	CITATIONS
1	Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2063-2090.	4.9	570
2	The future of hyperdiverse tropical ecosystems. Nature, 2018, 559, 517-526.	27.8	452
3	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	4.9	395
4	The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.	3.6	388
5	Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 3063-3085.	4.9	361
6	Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.	4.9	288
7	Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmospheric Chemistry and Physics, 2013, 13, 2563-2587.	4.9	257
8	Longâ€term ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5029-5060.	3.3	243
9	Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geoscientific Model Development, 2014, 7, 41-91.	3.6	191
10	Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa, 2018, 6, .	3.2	177
11	Impact of climate change on tropospheric ozone and its global budgets. Atmospheric Chemistry and Physics, 2008, 8, 369-387.	4.9	166
12	Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability, 2019, 2, 569-579.	23.7	156
13	Ozone—climate interactions and effects on solar ultraviolet radiation. Photochemical and Photobiological Sciences, 2019, 18, 602-640.	2.9	126
14	Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nature Communications, 2019, 10, 1900.	12.8	108
15	The CO ₂ inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmospheric Chemistry and Physics, 2009, 9, 2793-2803.	4.9	103
16	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	2.9	93
17	Tropospheric ozone in CMIP6 simulations. Atmospheric Chemistry and Physics, 2021, 21, 4187-4218.	4.9	89
18	Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmospheric Chemistry and Physics, 2013, 13, 4057-4072.	4.9	61

#	Article	IF	CITATIONS
19	Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochemical and Photobiological Sciences, 2020, 19, 542-584.	2.9	59
20	A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations. Earth System Science Data, 2013, 5, 31-43.	9.9	53
21	Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds. Atmospheric Chemistry and Physics, 2010, 10, 2491-2506.	4.9	52
22	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	3.2	52
23	Is the ozone climate penalty robust in Europe?. Environmental Research Letters, 2015, 10, 084015.	5.2	48
24	Changes in Stratospheric Temperatures and Their Implications for Changes in the Brewer–Dobson Circulation, 1979–2005. Journal of Climate, 2012, 25, 1759-1772.	3.2	45
25	Response of lightning NO _{<i>x</i>} emissions and ozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project. Geophysical Research Letters, 2016, 43, 5492-5500.	4.0	44
26	Secondary forests offset less than 10% of deforestationâ€mediated carbon emissions in the Brazilian Amazon. Global Change Biology, 2020, 26, 7006-7020.	9.5	40
27	Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo. Atmospheric Chemistry and Physics, 2010, 10, 7117-7125.	4.9	39
28	The Montreal Protocol protects the terrestrial carbon sink. Nature, 2021, 596, 384-388.	27.8	38
29	Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	37
30	Diverse policy implications for future ozone and surface UV in a changing climate. Environmental Research Letters, 2016, 11, 064017.	5.2	37
31	The Seasonal Cycle and Interannual Variability in Stratospheric Temperatures and Links to the Brewer–Dobson Circulation: An Analysis of MSU and SSU Data. Journal of Climate, 2011, 24, 6243-6258.	3.2	33
32	Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble. Atmospheric Chemistry and Physics, 2016, 16, 343-363.	4.9	33
33	NO _x and O ₃ above a tropical rainforest: an analysis with a global and box model. Atmospheric Chemistry and Physics, 2010, 10, 10607-10620.	4.9	32
34	Uncertainties in the evolution of stratospheric ozone and implications for recent temperature changes in the tropical lower stratosphere. Geophysical Research Letters, 2012, 39, .	4.0	31
35	Comparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings. Atmospheric Chemistry and Physics, 2013, 13, 5533-5550.	4.9	31
36	Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions. Atmospheric Environment, 2018, 180, 93-102.	4.1	31

#	Article	IF	CITATIONS
37	Key drivers of ozone change and its radiative forcing over the 21st century. Atmospheric Chemistry and Physics, 2018, 18, 6121-6139.	4.9	30
38	How plants can influence tropospheric chemistry: the role of isoprene emissions from the biosphere. Weather, 2009, 64, 332-336.	0.7	28
39	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3210-3224.	4.0	27
40	Agreement in late twentieth century Southern Hemisphere stratospheric temperature trends in observations and CCMValâ€2, CMIP3, and CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 605-613.	3.3	27
41	Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. Journal of Geophysical Research, 2012, 117, .	3.3	24
42	Old-growth forest loss and secondary forest recovery across Amazonian countries. Environmental Research Letters, 2021, 16, 085009.	5.2	22
43	Climate/chemistry feedbacks and biogenic emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1727-1740.	3.4	20
44	Interhemispheric differences in seasonal cycles of tropospheric ozone in the marine boundary layer: Observationâ€model comparisons. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,075.	3.3	19
45	Reconciling modeled and observed temperature trends over Antarctica. Geophysical Research Letters, 2012, 39, .	4.0	17
46	A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031286.	3.3	16
47	Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence. Atmospheric Chemistry and Physics, 2020, 20, 9961-9977.	4.9	16
48	Urbanisation's contribution to climate warming in Great Britain. Environmental Research Letters, 2020, 15, 114014.	5.2	14
49	Modeling the climate impact of Southern Hemisphere ozone depletion: The importance of the ozone data set. Geophysical Research Letters, 2014, 41, 9033-9039.	4.0	10
50	SE in ES., 2018,,.		10
51	A temperature dependent extreme value analysis of UK surface ozone, 1980–2019. Atmospheric Environment, 2022, 273, 118975.	4.1	9
52	Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multiâ€Decadal Variability. Geophysical Research Letters, 2021, 48, e2020GL092162.	4.0	5
53	Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
54	Atmospheric chemistry and the biosphere: general discussion. Faraday Discussions, 2017, 200, 195-228.	3.2	1

Paul J Young

#	Article	lF	CITATIONS
55	The air we breathe: Past, present, and future: general discussion. Faraday Discussions, 2017, 200, 501-527.	3.2	1
56	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	3.2	0