Ji-Xin Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080376/publications.pdf

Version: 2024-02-01

10127 8159 22,751 281 76 140 citations h-index g-index papers 304 304 304 21622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Converting hyperspectral SRS into chemical maps. , 2022, , 359-369.		О
2	Rapid determination of antimicrobial susceptibility by SRS single-cell metabolic imaging. , 2022, , 445-461.		O
3	Resolving molecular orientation by polarization-sensitive stimulated Raman scattering microscopy. , 2022, , 529-537.		O
4	Plasmon-enhanced stimulated Raman scattering microscopy. , 2022, , 343-356.		0
5	Miniaturized handheld stimulated Raman scattering microscope. , 2022, , 551-560.		O
6	Multiplex stimulated Raman scattering microscopy via a tuned amplifier. , 2022, , 91-98.		0
7	Photoinactivation of Catalase Sensitizes <i>Candida albicans</i> and <i>Candida auris</i> to ROSâ€Producing Agents and Immune Cells. Advanced Science, 2022, 9, e2104384.	5.6	12
8	Rapid Antimicrobial Susceptibility Testing by Stimulated Raman Scattering Imaging of Deuterium Incorporation in a Single Bacterium. Journal of Visualized Experiments, 2022, , .	0.2	1
9	Wide-Field Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy. ACS Photonics, 2022, 9, 1042-1049.	3.2	7
10	New "HOPE―laser for photoacoustic imaging of water. Light: Science and Applications, 2022, 11, 107.	7.7	1
11	High-precision neural stimulation through optoacoustic emitters. Neurophotonics, 2022, 9, 032207.	1.7	5
12	Photoinactivation of catalase sensitizes a wide range of bacteria to ROS-producing agents and immune cells. JCI Insight, 2022, 7, .	2.3	10
13	SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
14	Deep Brain Optoacoustic Stimulation Enabled by a Multifunctional Fiber-based Optoacoustic Emitter. , 2022, , .		0
15	Frizzled-7 Identifies Platinum-Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis. Cancer Research, 2021, 81, 384-399.	0.4	113
16	Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy. Chemical Science, 2021, 12, 1930-1936.	3.7	2
17	Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in <i>Candida</i> membrane. Science Advances, 2021, 7, .	4.7	27
18	Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor. Journal of Chemical Physics, 2021, 154, 034201.	1.2	9

#	Article	IF	CITATIONS
19	Ambient Oxygen-Doped Conjugated Polymer for pH-Activatable Aggregation-Enhanced Photoacoustic Imaging in the Second Near-Infrared Window. Analytical Chemistry, 2021, 93, 3189-3195.	3.2	18
20	Neural Stimulation InÂVitro and InÂVivo by Photoacoustic Nanotransducers. Matter, 2021, 4, 654-674.	5.0	32
21	Granadaene Photobleaching Reduces the Virulence and Increases Antimicrobial Susceptibility of <i>Streptococcus agalactiae</i> . Photochemistry and Photobiology, 2021, 97, 816-825.	1.3	9
22	Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy. Analytical Chemistry, 2021, 93, 4100-4107.	3.2	37
23	Ultrasensitive Vibrational Imaging of Retinoids by Visible Preresonance Stimulated Raman Scattering Microscopy. Advanced Science, 2021, 8, 2003136.	5. 6	21
24	Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing. Cancers, 2021, 13, 1718.	1.7	32
25	Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nature Communications, 2021, 12, 3052.	5 . 8	58
26	Bond-selective imaging by optically sensing the mid-infrared photothermal effect. Science Advances, 2021, 7, .	4.7	61
27	Bond-selective interferometric scattering microscopy. Journal Physics D: Applied Physics, 2021, 54, 364002.	1.3	6
28	Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. Light: Science and Applications, 2021, 10, 143.	7.7	27
29	Fluorescence-Detected Mid-Infrared Photothermal Microscopy. Journal of the American Chemical Society, 2021, 143, 11490-11499.	6.6	37
30	Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Molecular Cell, 2021, 81, 4209-4227.e12.	4.5	84
31	Coherent Raman scattering imaging with a near-infrared achromatic metalens. APL Photonics, 2021, 6, 096107.	3.0	8
32	Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 2021, 7, .	4.7	142
33	Background-Suppressed High-Throughput Mid-Infrared Photothermal Microscopy via Pupil Engineering. ACS Photonics, 2021, 8, 3323-3336.	3.2	18
34	Multimodal Metabolic Imaging Reveals Pigment Reduction and Lipid Accumulation in Metastatic Melanoma. BME Frontiers, 2021, 2021, .	2.2	16
35	Multiwindow SRS Imaging Using a Rapid Widely Tunable Fiber Laser. Analytical Chemistry, 2021, 93, 15703-15711.	3.2	13
36	Raman microspectroscopy for microbiology. Nature Reviews Methods Primers, 2021, 1, .	11.8	57

#	Article	IF	CITATIONS
37	Investigating antibiotics in cells with pre-resonance stimulated Raman scattering hyperspectral microscopy., 2021,,.		O
38	Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nature Communications, 2021, 12, 7097.	5.8	27
39	Quinine Enhances Photo-Inactivation of Gram-Negative Bacteria. Journal of Infectious Diseases, 2020, 221, 618-626.	1.9	21
40	Room-Temperature Phosphorescence and Low-Energy Induced Direct Triplet Excitation of Alq ₃ Engineered Crystals. Journal of Physical Chemistry Letters, 2020, 11, 9364-9370.	2.1	4
41	Polymer Electrochromism Driven by Metabolic Activity Facilitates Rapid and Facile Bacterial Detection and Susceptibility Evaluation. Advanced Functional Materials, 2020, 30, 2005192.	7.8	17
42	A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution. Photoacoustics, 2020, 20, 100208.	4.4	18
43	Highly sensitive lipid detection and localization in atherosclerotic plaque with a dualâ€frequency intravascular photoacoustic/ultrasound catheter. Translational Biophotonics, 2020, 2, e202000004.	1.4	9
44	Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Molecular Cell, 2020, 80, 1104-1122.e9.	4.5	94
45	Fingerprinting Bacterial Metabolic Response to Erythromycin by Raman-Integrated Mid-Infrared Photothermal Microscopy. Analytical Chemistry, 2020, 92, 14459-14465.	3.2	20
46	Tau Oligomers and Fibrils Exhibit Differential Patterns of Seeding and Association With RNA Binding Proteins. Frontiers in Neurology, 2020, 11, 579434.	1.1	21
47	Rapid Determination of Antimicrobial Susceptibility by Stimulated Raman Scattering Imaging of D ₂ O Metabolic Incorporation in a Single Bacterium. Advanced Science, 2020, 7, 2001452.	5.6	72
48	High-Speed Chemical Imaging by Dense-Net Learning of Femtosecond Stimulated Raman Scattering. Journal of Physical Chemistry Letters, 2020, 11, 8573-8578.	2.1	38
49	Antibiotic Resistance: Photoâ€Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA (Adv. Sci. 6/2020). Advanced Science, 2020, 7, 2070035.	5.6	0
50	Multiplex Stimulated Raman Scattering Imaging Cytometry Reveals Lipid-Rich Protrusions in Cancer Cells under Stress Condition. IScience, 2020, 23, 100953.	1.9	72
51	Imaging Chemical Kinetics of Radical Polymerization with an Ultrafast Coherent Raman Microscope. Advanced Science, 2020, 7, 1903644.	5.6	29
52	Optoacoustic brain stimulation at submillimeter spatial precision. Nature Communications, 2020, 11, 881.	5.8	47
53	Staphyloxanthin Photolysis Potentiates Low Concentration Silver Nanoparticles in Eradication of Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of Physical Chemistry C, 2020, 124, 5321-5330.	1.5	17
54	Photoâ€Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. Advanced Science, 2020, 7, 1903117.	5.6	34

#	Article	IF	CITATIONS
55	Transient absorption microscopy: Technological innovations and applications in materials science and life science. Journal of Chemical Physics, 2020, 152, 020901.	1.2	41
56	Functionalized NIRâ€II Semiconducting Polymer Nanoparticles for Singleâ€cell to Wholeâ€Organ Imaging of PSMAâ€Positive Prostate Cancer. Small, 2020, 16, e2001215.	5.2	34
57	Dual-wavelength photo-killing of methicillin-resistant Staphylococcus aureus. JCI Insight, 2020, 5, .	2.3	22
58	Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. Optics Express, 2020, 28, 30210.	1.7	16
59	Stimulated Raman scattering signal generation in a scattering medium using self-reconstructing Bessel beams. Photonics Research, 2020, 8, 929.	3.4	7
60	Origin of dispersive line shapes in plasmon-enhanced stimulated Raman scatteringÂmicroscopy. Nanophotonics, 2020, 10, 617-625.	2.9	6
61	Intravascular Photoacoustic Imaging of Lipid-Laden Plaques: From Fundamental Concept Toward Clinical Translation. , 2020, , 81-104.		4
62	40â€3: Invited Paper: A Large RGBâ€achromatic Metalens for Virtual/Augmented Reality Applications. Digest of Technical Papers SID International Symposium, 2020, 51, 575-578.	0.1	0
63	Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Science Advances, 2019, 5, eaav7127.	4.7	89
64	Fingerprinting a Living Cell by Raman Integrated Mid-Infrared Photothermal Microscopy. Analytical Chemistry, 2019, 91, 10750-10756.	3.2	55
65	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. Journal of Physical Chemistry Letters, 2019, 10, 4374-4381.	2.1	9
66	All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. Nano Letters, 2019, 19, 8673-8682.	4.5	165
67	Label-free optical imaging of membrane potential. Current Opinion in Biomedical Engineering, 2019, 12, 118-125.	1.8	13
68	Label-Free Stimulated Raman Scattering Imaging of Neuronal Membrane Potential., 2019, , 107-122.		3
69	Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. Science Advances, 2019, 5, eaav0561.	4.7	24
70	Photolysis of Staphyloxanthin in Methicillinâ€Resistant <i>Staphylococcus aureus</i> Potentiates Killing by Reactive Oxygen Species. Advanced Science, 2019, 6, 1900030.	5.6	59
71	Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nature Communications, 2019, 10, 5318.	5.8	77
72	Bond-selective transient phase imaging via sensing of the infrared photothermal effect. Light: Science and Applications, 2019, 8, 116.	7.7	62

#	Article	lF	CITATIONS
73	siRNA Delivery Using Dithiocarbamate-Anchored Oligonucleotides on Gold Nanorods. Bioconjugate Chemistry, 2019, 30, 443-453.	1.8	20
74	Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound. Journal of Cardiovascular Translational Research, 2019, 12, 211-220.	1.1	15
75	Quantitative imaging of intraerythrocytic hemozoin by transient absorption microscopy. Journal of Biomedical Optics, $2019, 25, 1$.	1.4	9
76	Cylindrical illumination with angular coupling for whole-prostate photoacoustic tomography. Biomedical Optics Express, 2019, 10, 1405.	1.5	8
77	Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology. Biomedical Optics Express, 2019, 10, 4329.	1.5	36
78	High-resolution photoacoustic endoscope through beam self-cleaning in a graded index fiber. Optics Letters, 2019, 44, 3841.	1.7	26
79	Absorption-Based Far-Field Label-Free Super-Resolution Microscopy. Biological and Medical Physics Series, 2019, , 137-169.	0.3	0
80	Pre-resonance stimulated Raman scattering spectroscopy and imaging of membrane potential using near-infrared rhodopsins. , 2019, , .		2
81	SRS image cytometry for high-content single cell analysis. , 2019, , .		0
82	Antibiotic Susceptibility Determination within One Cell Cycle at Single-Bacterium Level by Stimulated Raman Metabolic Imaging. Analytical Chemistry, 2018, 90, 3737-3743.	3.2	86
83	Nanoladders Facilitate Directional Axonal Outgrowth and Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 1037-1045.	2.6	6
84	Quantitative Assessment of Liver Steatosis and Affected Pathways with Molecular Imaging and Proteomic Profiling. Scientific Reports, 2018, 8, 3606.	1.6	31
85	Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Scientific Reports, 2018, 8, 2400.	1.6	52
86	Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. Analytical Chemistry, 2018, 90, 3395-3401.	3.2	31
87	High-Speed Spectroscopic Transient Absorption Imaging of Defects in Graphene. Nano Letters, 2018, 18, 1489-1497.	4.5	26
88	<i>In Vivo</i> and <i>in Situ</i> Spectroscopic Imaging by a Handheld Stimulated Raman Scattering Microscope. ACS Photonics, 2018, 5, 947-954.	3.2	58
89	In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis. Journal of Lipid Research, 2018, 59, 820-829.	2.0	29
90	Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/ \hat{l}^2 -catenin Pathway. Molecular Cancer Research, 2018, 16, 974-985.	1.5	52

#	Article	IF	Citations
91	Chemical imaging of fresh vascular smooth muscle cell response by epiâ€detected stimulated Raman scattering. Journal of Biophotonics, 2018, 11, e201700005.	1.1	5
92	Highâ€speed intraâ€operative assessment of breast tumour margins by multimodal ultrasound and photoacoustic tomography. Medical Devices & Sensors, 2018, 1, e10018.	2.7	12
93	Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion. Light: Science and Applications, 2018, 7, 17179-17179.	7.7	51
94	A fiber optoacoustic guide with augmented reality for precision breast-conserving surgery. Light: Science and Applications, 2018, 7, 2.	7.7	28
95	Perspective: Coherent Raman scattering microscopy, the future is bright. APL Photonics, 2018, 3, .	3.0	69
96	Photoacoustic tomography of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets. Photoacoustics, 2018, 11, 46-55.	4.4	22
97	Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation. PLoS ONE, 2018, 13, e0193318.	1.1	43
98	Fingerprint Stimulated Raman Scattering Imaging Reveals Retinoid Coupling Lipid Metabolism and Survival. ChemPhysChem, 2018, 19, 2500-2506.	1.0	25
99	Imaging of demineralized enamel in intact tooth by epidetected stimulated Raman scattering microscopy. Journal of Biomedical Optics, 2018, 23, 1.	1.4	5
100	Stimulated Raman spectroscopic imaging by microsecond delay-line tuning., 2017,,.		0
101	Label-Free Vibrational Spectroscopic Imaging of Neuronal Membrane Potential. Journal of Physical Chemistry Letters, 2017, 8, 1932-1936.	2.1	48
102	Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution. Analytical Chemistry, 2017, 89, 4863-4867.	3.2	68
103	Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Scientific Reports, 2017, 7, 1417.	1.6	68
104	Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque at speed of video-rate level. Proceedings of SPIE, 2017, , .	0.8	1
105	Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nature Communications, 2017, 8, 15117.	5.8	61
106	3,3'â€Diindolylmethane suppresses highâ€fat dietâ€induced obesity through inhibiting adipogenesis of preâ€adipocytes by targeting USP2 activity. Molecular Nutrition and Food Research, 2017, 61, 1700119.	1.5	29
107	Spectral analysis assisted photoacoustic imaging for lipid composition differentiation. Photoacoustics, 2017, 7, 12-19.	4.4	28
108	Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging. Analytical Chemistry, 2017, 89, 4502-4507.	3.2	63

#	Article	IF	Citations
109	Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells. Cell Stem Cell, 2017, 20, 303-314.e5.	5. 2	414
110	Bond-Selective Imaging of Cells by Mid-Infrared Photothermal Microscopy in High Wavenumber Region. Journal of Physical Chemistry B, 2017, 121, 10249-10255.	1.2	49
111	Semiconducting Polymer Nanoparticles for Centimetersâ€Deep Photoacoustic Imaging in the Second Nearâ€Infrared Window. Advanced Materials, 2017, 29, 1703403.	11.1	136
112	Imaging chemistry inside living cells by stimulated Raman scattering microscopy. Methods, 2017, 128, 119-128.	1.9	39
113	Evolution of Membrane Fouling Revealed by Label-Free Vibrational Spectroscopic Imaging. Environmental Science & Environmental	4.6	36
114	Stimulated Raman Imaging Reveals Aberrant Lipogenesis as a Metabolic Marker for Azole-Resistant <i>Candida albicans</i> . Analytical Chemistry, 2017, 89, 9822-9829.	3.2	25
115	Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Molecular Metabolism, 2017, 6, 863-872.	3.0	97
116	Stimulated Raman scattering flow cytometry for label-free single-particle analysis. Optica, 2017, 4, 103.	4.8	86
117	Intermuscular Adipose Tissue Content and Intramyocellular Lipid Fatty Acid Saturation Are Associated with Glucose Homeostasis in Middle-Aged and Older Adults. Endocrinology and Metabolism, 2017, 32, 257.	1.3	17
118	High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines. Optics Letters, 2017, 42, 1548.	1.7	53
119	Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS ONE, 2017, 12, e0179558.	1.1	41
120	Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. Optica, 2016, 3, 1377.	4.8	73
121	Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics, 2016, 4, 11-21.	4.4	66
122	Coherent anti-Stokes Raman scattering imaging under ambient light. Optics Letters, 2016, 41, 3880.	1.7	6
123	<i>In situ</i> Detection of a Single Bacterium in Complex Environment by Hyperspectral CARS Imaging. ChemistrySelect, 2016, 1, 513-517.	0.7	19
124	Photochemical Tagging for Quantitation of Unsaturated Fatty Acids by Mass Spectrometry. Analytical Chemistry, 2016, 88, 8931-8935.	3.2	82
125	Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Science Advances, 2016, 2, e1600521.	4.7	229
126	High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design. Scientific Reports, 2016, 6, 25236.	1.6	78

#	Article	IF	Citations
127	Deciphering single cell metabolism by coherent Raman scattering microscopy. Current Opinion in Chemical Biology, 2016, 33, 46-57.	2.8	55
128	In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy. Annual Review of Analytical Chemistry, 2016, 9, 69-93.	2.8	35
129	Labelâ€free <i>in vivo</i> imaging of peripheral nerve by multispectral photoacoustic tomography. Journal of Biophotonics, 2016, 9, 124-128.	1.1	29
130	Highly Sensitive Intravascular Photoacoustic Imaging with a Collinear Catheter Probe. , 2016, , .		0
131	High-speed intravascular photoacoustic imaging at 17 \hat{l} 4m with a KTP-based OPO. Biomedical Optics Express, 2015, 6, 4557.	1.5	41
132	Morphological and Biomechanical Differences in the Elastase and Angll <i>apoE</i> ^{<i>â^²/â^³</i>} Rodent Models of Abdominal Aortic Aneurysms. BioMed Research International, 2015, 2015, 1-12.	0.9	38
133	Converting Molecular Vibration to Mechanical Wave for Bond-Selective Imaging of Deep Tissue. Chinese Journal of Chemical Physics, 2015, 28, 375-382.	0.6	2
134	Coherent Raman Scattering Microscopy in Biology and Medicine. Annual Review of Biomedical Engineering, 2015, 17, 415-445.	5.7	153
135	Avasimibe Encapsulated in Human Serum Albumin Blocks Cholesterol Esterification for Selective Cancer Treatment. ACS Nano, 2015, 9, 2420-2432.	7.3	68
136	Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol. Scientific Reports, 2015, 5, 7930.	1.6	122
137	Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. Scientific Reports, 2015, 5, 12394.	1.6	30
138	Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography. Proceedings of SPIE, 2015, , .	0.8	2
139	Assessing breast tumor margin by multispectral photoacoustic tomography. Biomedical Optics Express, 2015, 6, 1273.	1.5	101
140	Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Science Advances, 2015, 1, e1500738.	4.7	88
141	Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light: Science and Applications, 2015, 4, e265-e265.	7.7	172
142	Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Applied Physics Letters, 2015, 106, .	1.5	44
143	Vibrational Fingerprint Mapping Reveals Spatial Distribution of Functional Groups of Lignin in Plant Cell Wall. Analytical Chemistry, 2015, 87, 9436-9442.	3.2	32
144	Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science, 2015, 350, aaa8870.	6.0	599

#	Article	IF	Citations
145	Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization. Journal of Physical Chemistry C, 2015, 119, 19397-19403.	1.5	34
146	Abstract 253: Vibrational Photoacoustic Imaging of Lipid in Murine Abdominal Aortic Aneurysms and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	1
147	Assessment of White Matter Loss Using Bond-Selective Photoacoustic Imaging in a Rat Model of Contusive Spinal Cord Injury. Journal of Neurotrauma, 2014, 31, 1998-2002.	1.7	23
148	Label-free real-time imaging of myelination in the <i>Xenopus laevis</i> tadpole by <i>in vivo</i> stimulated Raman scattering microscopy. Journal of Biomedical Optics, 2014, 19, 086005.	1.4	23
149	Neuroprotective ferulic acid (FA)–glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials, 2014, 35, 2355-2364.	5 . 7	105
150	Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness. Cell Metabolism, 2014, 19, 393-406.	7.2	671
151	Imaging Lipid Metabolism in Live <i>Caenorhabditis elegans</i> Using Fingerprint Vibrations. Angewandte Chemie - International Edition, 2014, 53, 11787-11792.	7.2	78
152	Plk1 Inhibition Enhances the Efficacy of Androgen Signaling Blockade in Castration-Resistant Prostate Cancer. Cancer Research, 2014, 74, 6635-6647.	0.4	87
153	Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy. Accounts of Chemical Research, 2014, 47, 2282-2290.	7.6	134
154	High-speed Intravascular Photoacoustic Imaging of Lipid-laden Atherosclerotic Plaque Enabled by a 2-kHz Barium Nitrite Raman Laser. Scientific Reports, 2014, 4, 6889.	1.6	107
155	Direct Visualization of De novo Lipogenesis in Single Living Cells. Scientific Reports, 2014, 4, 6807.	1.6	139
156	Imaging Cytoplasmic Lipid Droplets in Enterocytes and Assessing Dietary Fat Absorption. Methods in Cell Biology, 2013, 116, 151-166.	0.5	11
157	FRET Imaging Reveals Different Cellular Entry Routes of Self-Assembled and Disulfide Bonded Polymeric Micelles. Molecular Pharmaceutics, 2013, 10, 3497-3506.	2.3	47
158	Nanomedicine for treating spinal cord injury. Nanoscale, 2013, 5, 8821.	2.8	63
159	Vibrational Photoacoustic Tomography: Chemical Imaging beyond the Ballistic Regime. Journal of Physical Chemistry Letters, 2013, 4, 3211-3215.	2.1	15
160	Quantitative Vibrational Imaging by Hyperspectral Stimulated Raman Scattering Microscopy and Multivariate Curve Resolution Analysis. Analytical Chemistry, 2013, 85, 98-106.	3.2	198
161	Triacylglycerol Synthesis Enzymes Mediate Lipid Droplet Growth by Relocalizing from the ER to Lipid Droplets. Developmental Cell, 2013, 24, 384-399.	3.1	623
162	Single Cell Optical Imaging and Spectroscopy. Chemical Reviews, 2013, 113, 2469-2527.	23.0	250

#	Article	IF	Citations
163	Biaxial deformation of collagen and elastin fibers in coronary adventitia. Journal of Applied Physiology, 2013, 115, 1683-1693.	1.2	57
164	Nonlinear Optical Microscopy of Single Nanostructures. Annual Review of Materials Research, 2013, 43, 213-236.	4.3	35
165	Far-field imaging of non-fluorescent species with subdiffraction resolution. Nature Photonics, 2013, 7, 449-453.	15.6	131
166	Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration. Journal of Physical Chemistry Letters, 2013, 4, 2177-2185.	2.1	49
167	Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials, 2013, 34, 552-561.	5.7	102
168	Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Optics Express, 2013, 21, 13864.	1.7	98
169	Compact high power barium nitrite crystal-based Raman laser at 1197Ânm for photoacoustic imaging of fat. Journal of Biomedical Optics, 2013, 18, 040502.	1.4	25
170	Labelâ€Free Quantitative Imaging of Cholesterol in Intact Tissues by Hyperspectral Stimulated Raman Scattering Microscopy. Angewandte Chemie - International Edition, 2013, 52, 13042-13046.	7.2	91
171	Timeâ€lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. Journal of Biophotonics, 2013, 6, 815-820.	1.1	18
172	Labelâ€free Spectroscopic Imaging of Lipids in Live Cells and Intact Tissues. FASEB Journal, 2013, 27, 813.6.	0.2	1
173	Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration. Journal of Biomedical Optics, 2012, 17, 0960101.	1.4	51
174	Paranodal Myelin Damage after Acute Stretch in Guinea Pig Spinal Cord. Journal of Neurotrauma, 2012, 29, 611-619.	1.7	34
175	Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nature Nanotechnology, 2012, 7, 56-61.	15.6	93
176	Label-Free Analysis of Breast Tissue Polarity by Raman Imaging of LipidÂPhase. Biophysical Journal, 2012, 102, 1215-1223.	0.2	42
177	Label-Free Imaging of Lipid-Droplet Intracellular Motion in Early Drosophila Embryos Using Femtosecond-Stimulated Raman Loss Microscopy. Biophysical Journal, 2012, 102, 1666-1675.	0.2	52
178	Study of Myelin Sheaths by Cars Microscopy. , 2012, , 221-245.		0
179	Imaging of Myelin by Coherent Anti-Stokes Raman Scattering Microscopy. Springer Protocols, 2012, , 281-291.	0.1	1
180	Heterodyne detected nonlinear optical imaging in a lockâ€in free manner. Journal of Biophotonics, 2012, 5, 801-807.	1.1	63

#	Article	IF	CITATIONS
181	One platform, multiple insights. Journal of Biophotonics, 2012, 5, 385-386.	1.1	O
182	Mechanisms of Epi-Detected Stimulated Raman Scattering Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 384-388.	1.9	15
183	Bondâ€selective imaging of deep tissue through the optical window between 1600 and 1850 nm. Journal of Biophotonics, 2012, 5, 25-32.	1.1	74
184	High-Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multiphoton Emissions. Journal of the American Chemical Society, 2011, 133, 5389-5396.	6.6	132
185	Highly Sensitive Vibrational Imaging by Femtosecond Pulse Stimulated Raman Loss. Journal of Physical Chemistry Letters, 2011, 2, 1248-1253.	2.1	142
186	The Layered Structure of Coronary Adventitia under Mechanical Load. Biophysical Journal, 2011, 101, 2555-2562.	0.2	74
187	Acrolein induces myelin damage in mammalian spinal cord. Journal of Neurochemistry, 2011, 117, 554-564.	2.1	50
188	Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. Journal of Nutritional Biochemistry, 2011, 22, 910-920.	1.9	134
189	Label-free imaging through nonlinear optical signals. Materials Today, 2011, 14, 264-273.	8.3	45
190	Multimodal nonlinear optical microscopy. Laser and Photonics Reviews, 2011, 5, 496-512.	4.4	139
191	Label-Free Bond-Selective Imaging by Listening to Vibrationally Excited Molecules. Physical Review Letters, 2011, 106, 238106.	2.9	132
192	Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord. Journal of Biomedical Optics, 2011, 16, 1.	1.4	54
193	Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics, 2011, 16, 106006.	1.4	49
194	Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. Applied Physics Letters, 2011, 98, 191106.	1.5	31
195	Real-Time CARS Imaging Reveals a Calpain-Dependent Pathway for Paranodal Myelin Retraction during High-Frequency Stimulation. PLoS ONE, 2011, 6, e17176.	1.1	51
196	Differential roles of acylâ€CoA:diacylglycerol acyltransferase1 (DGAT1) and DGAT2 in dietary fat absorption FASEB Journal, 2011, 25, 105.2.	0.2	0
197	Adipose tissue triglyceride lipase mRNA is present in the small intestine and increased in response to acute and chronic high fat feeding in mice. FASEB Journal, 2011, 25, 936.4.	0.2	0
198	Novel Potassium Channel Blocker, 4-AP-3-MeOH, Inhibits Fast Potassium Channels and Restores Axonal Conduction in Injured Guinea Pig Spinal Cord White Matter. Journal of Neurophysiology, 2010, 103, 469-478.	0.9	40

#	Article	IF	CITATIONS
199	Bright Threeâ€Photon Luminescence from Gold/Silver Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity. Angewandte Chemie - International Edition, 2010, 49, 3485-3488.	7.2	133
200	Inside Cover: Bright Three-Photon Luminescence from Gold/Silver Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity (Angew. Chem. Int. Ed. 20/2010). Angewandte Chemie - International Edition, 2010, 49, 3392-3392.	7.2	0
201	Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nature Nanotechnology, 2010, 5, 80-87.	15.6	102
202	Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. Journal of Lipid Research, 2010, 51, 672-677.	2.0	99
203	Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. Journal of Lipid Research, 2010, 51, 3091-3102.	2.0	142
204	Intestine-specific expression of acyl CoA:diacylglycerol acyltransferase 1 reverses resistance to diet-induced hepatic steatosis and obesity in Dgat1 mice. Journal of Lipid Research, 2010, 51, 1770-1780.	2.0	72
205	Fast Detection of the Metallic State of Individual Single-Walled Carbon Nanotubes Using a Transient-Absorption Optical Microscope. Physical Review Letters, 2010, 105, 217401.	2.9	46
206	Compression Induces Acute Demyelination and Potassium Channel Exposure in Spinal Cord. Journal of Neurotrauma, 2010, 27, 1109-1120.	1.7	70
207	Overcoming the barriers in micellar drug delivery: loading efficiency, <i>in vivo</i> stability, and micelle–cell interaction. Expert Opinion on Drug Delivery, 2010, 7, 49-62.	2.4	487
208	Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst, The, 2010, 135, 2613.	1.7	91
209	A Comparative Study of Fat Storage Quantitation in Nematode Caenorhabditis elegans Using Label and Label-Free Methods. PLoS ONE, 2010, 5, e12810.	1.1	202
210	Fenofibrate (FEN), a peroxisome proliferator activated receptor alpha (PPAR $\hat{l}\pm$) agonist, decreases dietary fat absorption and alters triglyceride (TG) metabolism in enterocytes of mice. FASEB Journal, 2010, 24, 210.1.	0.2	1
211	Single-Cell Profiling Reveals the Origin of Phenotypic Variability in Adipogenesis. PLoS ONE, 2009, 4, e5189.	1.1	51
212	Glutamate Excitotoxicity Inflicts Paranodal Myelin Splitting and Retraction. PLoS ONE, 2009, 4, e6705.	1.1	86
213	A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. Journal of Lipid Research, 2009, 50, 1080-1089.	2.0	122
214	Imaging growth of neurites in conditioned hydrogel by coherent anti-Stokes Raman scattering microscopy. Organogenesis, 2009, 5, 231-237.	0.4	15
215	Coupling CARS with multiphoton fluorescence and high harmonic generation imaging modalities using a femtosecond laser source. Proceedings of SPIE, 2009, , .	0.8	1
216	Imaging and Quantitative Analysis of Atherosclerotic Lesions by CARS-Based Multimodal Nonlinear Optical Microscopy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1342-1348.	1.1	99

#	Article	IF	CITATIONS
217	Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer, 2009, 9, 42.	1.1	156
218	Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects ^{â€} . Photochemistry and Photobiology, 2009, 85, 21-32.	1.3	502
219	Chasing lipids in health and diseases by coherent anti-Stokes Raman scattering microscopy. Vibrational Spectroscopy, 2009, 50, 160-167.	1.2	48
220	Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing. Journal of Physical Chemistry C, 2009, 113, 2657-2663.	1.5	40
221	High-Speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy. Journal of Physical Chemistry B, 2009, 113, 7681-7686.	1.2	126
222	Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 1173-1180.	1.2	74
223	A multimodal platform for nonlinear optical microscopy and microspectroscopy. Optics Express, 2009, 17, 1282.	1.7	126
224	Visualizing Systemic Clearance and Cellular Level Biodistribution of Gold Nanorods by Intrinsic Two-Photon Luminescence. Langmuir, 2009, 25, 12454-12459.	1.6	47
225	In Vitro and In Vivo Nonlinear Optical Imaging of Silicon Nanowires. Nano Letters, 2009, 9, 2440-2444.	4.5	60
226	Ligand-functionalized gold nanorods as theragnostic agents. , 2009, , .		2
227	Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria. Nanomedicine, 2009, 4, 265-276.	1.7	54
228	NON-LINEAR OPTICAL IMAGING OF OBESITY-RELATED HEALTH RISKS: REVIEW. Journal of Innovative Optical Health Sciences, 2009, 02, 9-25.	0.5	4
229	Association of PAT proteins with cytoplasmic lipid droplets in mouse enterocytes. FASEB Journal, 2009, 23, 343.1.	0.2	0
230	Intestine specific overâ€expression of DGAT1 in mice alters triacylglycerol storage in enterocytes, but not body weight in response to a high fat diet. FASEB Journal, 2009, 23, .	0.2	0
231	Singleâ€cell Molecular Profiling of Adipogenesis on an Integrated CARSâ€Confocal Raman Platform. FASEB Journal, 2009, 23, 681.3.	0.2	0
232	Intestine specific expression of DGAT1 reverses the resistance to dietâ€induced obesity phenotype of DGAT1â€deficient female mice. FASEB Journal, 2009, 23, 721.4.	0.2	0
233	Two-photon luminescence imaging of Bacillus spores using peptide-functionalized gold nanorods. Nano Research, 2008, 1, 450-456.	5.8	32
234	Application of coherent antiâ€stokes Raman scattering microscopy to image the changes in a paclitaxel–poly(styreneâ€ <i>b</i> àâ€sobutyleneâ€ <i>b</i> àâ€styrene) matrix pre―and postâ€drug elution. Jou of Biomedical Materials Research - Part A, 2008, 87A, 913-920.	rızatı	19

#	Article	IF	CITATIONS
235	Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Optics Communications, 2008, 281, 1813-1822.	1.0	122
236	Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 4-9.	1.9	53
237	Microfluidic CARS cytometry. Optics Express, 2008, 16, 5782.	1.7	63
238	Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Optics Express, 2008, 16, 19396.	1.7	151
239	Label-Free Coherent Anti-Stokes Raman Scattering Imaging of Coexisting Lipid Domains in Single Bilayers. Journal of Physical Chemistry B, 2008, 112, 1576-1579.	1.2	24
240	Selective Detection of Protein Crystals by Second Harmonic Microscopy. Journal of the American Chemical Society, 2008, 130, 14076-14077.	6.6	109
241	Fast Release of Lipophilic Agents from Circulating PEG-PDLLA Micelles Revealed by <i>in Vivo</i> Förster Resonance Energy Transfer Imaging. Langmuir, 2008, 24, 5213-5217.	1.6	293
242	Release of hydrophobic molecules from polymer micelles into cell membranes revealed by $\tilde{\text{FA}}$ rster resonance energy transfer imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6596-6601.	3.3	358
243	Multimodality Nonlinear Optical Imaging. , 2008, , .		O
244	New advances of nonlinear optical microscopy. , 2008, , .		0
244	New advances of nonlinear optical microscopy. , 2008, , . New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-1065.	1.6	0
	New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics,	1.6	
245	New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-1065.	1.6	16
245	New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-1065. Coherent anti-Stokes Raman scattering microscopy., 2008,, New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics,		16
245 246 247	New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-1065. Coherent anti-Stokes Raman scattering microscopy., 2008,,. New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-65. Molecular Imaging of Central Nervous System with Multi-modal Nonlinear Optical Microscopy., 2007,		16 1 9
245 246 247 248	New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-1065. Coherent anti-Stokes Raman scattering microscopy., 2008,, New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-65. Molecular Imaging of Central Nervous System with Multi-modal Nonlinear Optical Microscopy., 2007, Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical	1.6	16 1 9
245 246 247 248	New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-1065. Coherent anti-Stokes Raman scattering microscopy., 2008,,. New imaging techniques in the diagnosis of multiple sclerosis. Expert Opinion on Medical Diagnostics, 2008, 2, 1055-65. Molecular Imaging of Central Nervous System with Multi-modal Nonlinear Optical Microscopy., 2007,, Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. Journal of Biomedical Optics, 2007, 12, 054007. Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature	1.6	16 1 9 0

#	Article	IF	CITATIONS
253	Controlling the Cellular Uptake of Gold Nanorods. Langmuir, 2007, 23, 1596-1599.	1.6	288
254	Second Harmonic and Sum Frequency Generation Imaging of Fibrous Astroglial Filaments in Ex Vivo Spinal Tissues. Biophysical Journal, 2007, 92, 3251-3259.	0.2	87
255	Nonlinear Optical Imaging to Evaluate the Impact of Obesity on Mammary Gland and Tumor Stroma. Molecular Imaging, 2007, 6, 7290.2007.00018.	0.7	48
256	Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced Materials, 2007, 19, 3136-3141.	11.1	545
257	Coherent anti-stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. Journal of Neuroscience Research, 2007, 85, 2870-2881.	1.3	103
258	Paclitaxel distribution in poly(ethylene glycol)/poly(lactide-co-glycolic acid) blends and its release visualized by coherent anti-Stokes Raman scattering microscopy. Journal of Controlled Release, 2007, 122, 261-268.	4.8	59
259	Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine, 2007, 2, 125-132.	1.7	512
260	Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma. Molecular Imaging, 2007, 6, 205-11.	0.7	39
261	In Situ Visualization of Paclitaxel Distribution and Release by Coherent Anti-Stokes Raman Scattering Microscopy. Analytical Chemistry, 2006, 78, 8036-8043.	3.2	67
262	Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Optics Express, 2006, 14, 3942.	1.7	182
263	Biomedical and biophysical applications of coherent anti-Stokes Raman scattering microscopy. , 2006, ,		O
264	Coherent anti-Stokes Raman scattering imaging with photonic crytal fiber delivered laser source. , 2006, , .		0
265	Molecular Composition and Orientation in Myelin Figures Characterized by Coherent Anti-Stokes Raman Scattering Microscopy. Langmuir, 2005, 21, 6478-6486.	1.6	54
266	In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15752-15756.	3.3	919
267	Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues. Biophysical Journal, 2005, 89, 581-591.	0.2	295
268	Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains. Biophysical Journal, 2005, 89, 3480-3490.	0.2	120
269	Coherent Anti-Stokes Raman Scattering Microscopy:  Instrumentation, Theory, and Applications. Journal of Physical Chemistry B, 2004, 108, 827-840.	1.2	897
270	Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. Journal of Lipid Research, 2003, 44, 2202-2208.	2.0	275

#	Article	IF	CITATIONS
271	Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9826-9830.	3.3	198
272	Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-Stokes Raman scattering microscopy. Review of Scientific Instruments, 2002, 73, 2843-2848.	0.6	72
273	Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles. Journal of Physical Chemistry B, 2002, 106, 8493-8498.	1.2	324
274	Coherent Anti-Stokes Raman Scattering Correlation Spectroscopy:Â Probing Dynamical Processes with Chemical Selectivity. Journal of Physical Chemistry A, 2002, 106, 8561-8568.	1.1	41
275	Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1363.	0.9	332
276	Green's function formulation for third-harmonic generation microscopy. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1604.	0.9	162
277	Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology. Biophysical Journal, 2002, 83, 502-509.	0.2	378
278	NEW ADVANCES IN COHERENT ANTI-STOKES RAMAN SCATTERING (CARS) MICROSCOPY., 2002,,.		1
279	Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy. Physical Review Letters, 2001, 87, .	2.9	299
280	Polarization coherent anti-Stokes Raman scattering microscopy. Optics Letters, 2001, 26, 1341.	1.7	354
281	An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity. Journal of Physical Chemistry B, 2001, 105, 1277-1280.	1.2	319