Stefano Schiaffino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080366/publications.pdf Version: 2024-02-01

STEEANO SCHIAFEINO

#	Article	IF	CITATIONS
1	The proteomic profile of the human myotendinous junction. IScience, 2022, 25, 103836.	4.1	13
2	Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. , 2022, 1, .		22
3	Molecular Mechanisms of Skeletal Muscle Hypertrophy. Journal of Neuromuscular Diseases, 2021, 8, 169-183.	2.6	64
4	Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skeletal Muscle, 2021, 11, 24.	4.2	65
5	Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. European Journal of Translational Myology, 2020, 30, 9311.	1.7	30
6	Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. European Journal of Translational Myology, 2020, , .	1.7	0
7	Fiber type diversity in skeletal muscle explored by mass spectrometry-based single fiber proteomics. Histology and Histopathology, 2020, 35, 239-246.	0.7	28
8	The Role of Omics Approaches in Muscle Research. , 2019, , 1-6.		0
9	Knockout of human muscle genes revealed by large scale whole-exome studies. Molecular Genetics and Metabolism, 2018, 123, 411-415.	1.1	3
10	Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age and Ageing, 2018, 47, iv1-iv19.	1.6	25
11	Muscle fiber type diversity revealed by antiâ€myosin heavy chain antibodies. FEBS Journal, 2018, 285, 3688-3694.	4.7	93
12	Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 2018, 16, e2005886.	5.6	107
13	Losing pieces without disintegrating: Contractile protein loss during muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1753-1755.	7.1	8
14	Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Reports, 2017, 19, 2396-2409.	6.4	213
15	Regulatory T cells and skeletal muscle regeneration. FEBS Journal, 2017, 284, 517-524.	4.7	110
16	MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nature Communications, 2016, 7, 12397.	12.8	88
17	Letter to the editor: Comments on Stuart et al. (2016): "Myosin content of individual human muscle fibers isolated by laser capture microdissection― American Journal of Physiology - Cell Physiology, 2016, 311, C1048-C1049.	4.6	2
18	The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models. Skeletal Muscle, 2016, 6, 33.	4.2	56

#	Article	IF	CITATIONS
19	The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Molecular Metabolism, 2015, 4, 823-833.	6.5	58
20	Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 2015, 16, 387-395.	4.5	163
21	Changes in skeletal muscle fiber types induced by chronic kidney disease. Kidney International, 2015, 88, 412.	5.2	3
22	Developmental myosins: expression patterns and functional significance. Skeletal Muscle, 2015, 5, 22.	4.2	352
23	Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 2014, 3, 29-41.	6.5	324
24	Mechanisms Modulating Skeletal Muscle Phenotype. , 2013, 3, 1645-1687.		191
25	Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 2013, 280, 4294-4314.	4.7	1,115
26	Muscle type and fiber type specificity in muscle wasting. International Journal of Biochemistry and Cell Biology, 2013, 45, 2191-2199.	2.8	435
27	Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology, 2013, 14, 303-323.	3.9	274
28	No evidence for inositol 1,4,5-trisphosphate–dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle. Journal of General Physiology, 2012, 140, 235-241.	1.9	36
29	Tubular aggregates in skeletal muscle: Just a special type of protein aggregates?. Neuromuscular Disorders, 2012, 22, 199-207.	0.6	73
30	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
31	Skeletal Muscle Fiber Types. , 2012, , 855-867.		2
32	Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.	2.5	144
33	Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle, 2011, 1, 4.	4.2	558
34	Fiber Types in Mammalian Skeletal Muscles. Physiological Reviews, 2011, 91, 1447-1531.	28.8	2,100
35	Translational Suppression of Atrophic Regulators by MicroRNA-23a Integrates Resistance to Skeletal Muscle Atrophy. Journal of Biological Chemistry, 2011, 286, 38456-38465.	3.4	165
36	Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. Journal of Applied Physiology, 2010, 108, 105-111.	2.5	42

#	Article	IF	CITATIONS
37	Fibre types in skeletal muscle: a personal account. Acta Physiologica, 2010, 199, 451-463.	3.8	170
38	Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. Journal of Physiology, 2010, 588, 353-364.	2.9	114
39	Regeneration of Mammalian Skeletal Muscle: Basic Mechanisms and Clinical Implications. Current Pharmaceutical Design, 2010, 16, 906-914.	1.9	322
40	NFAT isoforms control activity-dependent muscle fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13335-13340.	7.1	136
41	Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB Journal, 2009, 23, 3896-3905.	0.5	196
42	Multiple signalling pathways redundantly control glucose transporter <i>GLUT4</i> gene transcription in skeletal muscle. Journal of Physiology, 2009, 587, 4319-4327.	2.9	42
43	Autophagy Is Required to Maintain Muscle Mass. Cell Metabolism, 2009, 10, 507-515.	16.2	1,554
44	Cardiac interstitial cells express GATA4 and control dedifferentiation and cell cycle re-entry of adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2009, 46, 653-662.	1.9	46
45	Innervation of Regenerating Muscle. , 2008, , 303-334.		22
46	Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Human Molecular Genetics, 2008, 17, 3686-3696.	2.9	75
47	The role of autophagy in neonatal tissues: Just a response to amino acid starvation?. Autophagy, 2008, 4, 727-730.	9.1	60
48	Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy, 2008, 4, 524-526.	9.1	244
49	Activity-Dependent Signaling Pathways Controlling Muscle Diversity and Plasticity. Physiology, 2007, 22, 269-278.	3.1	207
50	Expression and activity of cyclooxygenase isoforms in skeletal muscles and myocardium of humans and rodents. Journal of Applied Physiology, 2007, 103, 1412-1418.	2.5	36
51	FoxO3 Controls Autophagy in Skeletal Muscle In Vivo. Cell Metabolism, 2007, 6, 458-471.	16.2	1,614
52	FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells. Cell Metabolism, 2007, 6, 472-483.	16.2	1,269
53	GATA elements control repression of cardiac troponin I promoter activity in skeletal muscle cells. BMC Molecular Biology, 2007, 8, 78.	3.0	10
54	NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. Journal of Cell Science, 2006, 119, 1604-1611.	2.0	81

#	Article	IF	CITATIONS
55	Hybrid cardiomyocytes derived by cell fusion in heterotopic cardiac xenografts. FASEB Journal, 2006, 20, 2534-2536.	0.5	15
56	Signaling Pathways Controlling Muscle Fiber Size and Type In Response To Nerve Activity. , 2006, , 91-119.		2
57	Computational reconstruction of the human skeletal muscle secretome. Proteins: Structure, Function and Bioinformatics, 2005, 62, 776-792.	2.6	111
58	NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10590-10595.	7.1	185
59	Heart morphogenesis is not affected by overexpression of the Sh3bgr gene mapping to the Down syndrome heart critical region. Human Genetics, 2004, 114, 517-519.	3.8	9
60	Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell, 2004, 117, 399-412.	28.9	2,490
61	A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9213-9218.	7.1	331
62	Chapter 4 Fiber type specification in vertebrate skeletal muscle. Advances in Developmental Biology and Biochemistry, 2002, 11, 75-95.	0.3	0
63	Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends in Pharmacological Sciences, 2002, 23, 569-575.	8.7	158
64	Regulatory Elements Governing Transcription in Specialized Myofiber Subtypes. Journal of Biological Chemistry, 2001, 276, 17361-17366.	3.4	43
65	Ras is involved in nerve-activity-dependent regulation of muscle genes. Nature Cell Biology, 2000, 2, 142-147.	10.3	197
66	Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: Mechanisms at the cellular and molecular levels. Critical Care Medicine, 2000, 28, 34-45.	0.9	258
67	Developmental expression of the SH3BGR gene, mapping to the Down syndrome heart critical region. Mechanisms of Development, 2000, 90, 313-316.	1.7	26
68	Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 290, 61-75.	4.2	200
69	Early Decrease of IIx Myosin Heavy Chain Transcripts in Duchenne Muscular Dystrophy. Biochemical and Biophysical Research Communications, 1999, 255, 466-469.	2.1	35
70	A Cardiac-Specific Troponin I Promoter. Distinctive Patterns of Regulation in Cultured Fetal Cardiomyocytes, Adult Heart and Transgenic Mice. Developments in Cardiovascular Medicine, 1999, , 17-25.	0.1	0
71	Isoform Transitions of the Myosin Binding Protein C Family in Developing Human and Mouse Muscles. Circulation Research, 1998, 82, 124-129.	4.5	104
72	Combinatorial cis-Acting Elements Control Tissue-specific Activation of the Cardiac Troponin I Gene in Vitro and in Vivo. Journal of Biological Chemistry, 1998, 273, 25371-25380.	3.4	74

#	Article	IF	CITATIONS
73	Myosin heavy chain gene expression changes in the diaphragm of patients with chronic lung hyperinflation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L527-L534.	2.9	56
74	Chapter 17 Molecular Diversity of Myofibrillar Proteins: Isoforms Analysis at the Protein and mRNA Level. Methods in Cell Biology, 1997, 52, 349-369.	1.1	22
75	Fibre type-specific and nerve-dependent regulation of myosin light chain 1 slow promoter in regenerating muscle. Journal of Muscle Research and Cell Motility, 1997, 18, 369-373.	2.0	22
76	Protean Patterns of Gene Expression in the Heart Conduction System. Circulation Research, 1997, 80, 749-750.	4.5	23
77	Early Myosin Switching Induced by Nerve Activity in Regenerating Slow Skeletal Muscle Cell Structure and Function, 1997, 22, 147-153.	1.1	65
78	Binding of Cytosolic Proteins to Myofibrils in Ischemic Rat Hearts. Circulation Research, 1996, 78, 821-828.	4.5	70
79	Characterization of a Human Perinatal Myosin Heavyâ€Chain Transcript. FEBS Journal, 1995, 230, 1001-1006.	0.2	Ο
80	Gene Transfer in Regenerating Muscle. Human Gene Therapy, 1994, 5, 11-18.	2.7	181
81	Contractile Protein Isoforms in Sarcomeric Muscles: Distribution, Function and Control of Gene Expression. , 1994, , 271-299.		Ο
82	Regional Differences in Troponin I Isoform Switching during Rat Heart Development. Developmental Biology, 1993, 156, 253-264.	2.0	74
83	Modification of the dystrophic phenotype after transient neonatal denervation: Role of MHC isoforms. Journal of Neurobiology, 1992, 23, 751-765.	3.6	2
84	Electrophoretic separation and immunological identification of type 2X myosin heavy chain in rat skeletal muscle. Biochimica Et Biophysica Acta - General Subjects, 1990, 1035, 109-112.	2.4	96
85	Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 1989, 10, 197-205.	2.0	832
86	Myosin heavy-chain isoforms in human smooth muscle. FEBS Journal, 1989, 179, 79-85.	0.2	48
87	A combined histochemical and immunohistochemical study on the dynamics of fast-to-slow fiber transformation in chronically stimulated rabbit muscle. Cell and Tissue Research, 1988, 254, 59-68.	2.9	73
88	Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Developmental Biology, 1988, 127, 1-11.	2.0	207
89	Heart conduction system: a neural crest derivative?. Brain Research, 1988, 457, 360-366.	2.2	110
90	Fetal myosin immunoreactivity in human dystrophic muscle. Muscle and Nerve, 1986, 9, 51-58.	2.2	80

#	Article	IF	CITATIONS
91	Fast-white and fast-red isomyosins in guinea pig muscles. Biochemical and Biophysical Research Communications, 1980, 96, 1662-1670.	2.1	56
92	Studies on the effect of denervation in developing muscle. II. The lysosomal system. Journal of Ultrastructure Research, 1972, 39, 1-14.	1.1	100