Motoko Y Kimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080299/publications.pdf

Version: 2024-02-01

159585 149698 4,905 57 30 56 citations h-index g-index papers 65 65 65 6992 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The cellular and molecular basis of CD69 function in anti-tumor immunity. International Immunology, 2022, 34, 555-561.	4.0	11
2	Clinical and Histological Effects of Partial Blood Flow Impairment in Vascularized Lymph Node Transfer. Journal of Clinical Medicine, 2022, 11, 4052.	2.4	O
3	CD4+ T cells in inflammatory diseases: pathogenic T-helper cells and the CD69–Myl9 system. International Immunology, 2021, 33, 699-704.	4.0	5
4	IFN \hat{I}^3 suppresses the expression of GFI1 and thereby inhibits Th2 cell proliferation. PLoS ONE, 2021, 16, e0260204.	2.5	1
5	Essential Role for CD30-Transglutaminase 2 Axis in Memory Th1 and Th17 Cell Generation. Frontiers in Immunology, 2020, 11, 1536.	4.8	5
6	Myosin Light Chain 9/12 Regulates the Pathogenesis of Inflammatory Bowel Disease. Frontiers in Immunology, 2020, 11, 594297.	4.8	10
7	Activated invariant natural killer T cells directly recognize leukemia cells in a CD1dâ€independent manner. Cancer Science, 2020, 111, 2223-2233.	3.9	10
8	Survival of NaÃ-ve T Cells Requires the Expression of Let-7 miRNAs. Frontiers in Immunology, 2019, 10, 955.	4.8	19
9	A new therapeutic target: the CD69-Myl9 system in immune responses. Seminars in Immunopathology, 2019, 41, 349-358.	6.1	31
10	Ezh2 controls development of natural killer T cells, which cause spontaneous asthma-like pathology. Journal of Allergy and Clinical Immunology, 2019, 144, 549-560.e10.	2.9	21
11	Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 3125.	4.8	34
12	CD69 prevents PLZFhi innate precursors from prematurely exiting the thymus and aborting NKT2 cell differentiation. Nature Communications, 2018, 9, 3749.	12.8	10
13	Crucial role of CD69 in anti-tumor immunity through regulating the exhaustion of tumor-infiltrating T cells. International Immunology, 2018, 30, 559-567.	4.0	73
14	Crucial role for <scp>CD</scp> 69 in allergic inflammatory responses: <scp>CD</scp> 69â€Myl9 system in the pathogenesis of airway inflammation. Immunological Reviews, 2017, 278, 87-100.	6.0	66
15	Timing and duration of MHC I positive selection signals are adjusted in the thymus to prevent lineage errors. Nature Immunology, 2016, 17, 1415-1423.	14.5	19
16	Myosin light chains 9 and 12 are functional ligands for CD69 that regulate airway inflammation. Science Immunology, 2016, 1, eaaf9154.	11.9	61
17	Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nature Immunology, 2015, 16, 517-524.	14.5	137
18	Methylation of Gata3 Protein at Arg-261 Regulates Transactivation of the II5 Gene in T Helper 2 Cells. Journal of Biological Chemistry, 2015, 290, 13095-13103.	3.4	28

#	Article	IF	CITATIONS
19	The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology, 2014, 15, 638-645.	14.5	58
20	Lck Availability during Thymic Selection Determines the Recognition Specificity of the T Cell Repertoire. Cell, 2013, 154, 1326-1341.	28.9	99
21	IL-7 signaling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death. Nature Immunology, 2013, 14, 143-151.	14.5	117
22	Foxp3 Transcription Factor Is Proapoptotic and Lethal to Developing Regulatory T Cells unless Counterbalanced by Cytokine Survival Signals. Immunity, 2013, 38, 1116-1128.	14.3	196
23	Coreceptor gene imprinting governs thymocyte lineage fate. EMBO Journal, 2012, 31, 366-377.	7.8	24
24	Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nature Immunology, 2010, 11, 257-264.	14.5	1,811
25	<i>Polycomb</i> Group Gene Product Ring1B Regulates Th2-Driven Airway Inflammation through the Inhibition of Bim-Mediated Apoptosis of Effector Th2 Cells in the Lung. Journal of Immunology, 2010, 184, 4510-4520.	0.8	22
26	Memory Th1/Th2 Cell Generation Controlled by Schnurri-2. Advances in Experimental Medicine and Biology, 2010, 684, 1-10.	1.6	16
27	Schnurri-2 Controls Memory Th1 and Th2 Cell Numbers In Vivo. Journal of Immunology, 2007, 178, 4926-4936.	0.8	22
28	Schnurri-2 regulates Th2-dependent airway inflammation and airway hyperresponsiveness. International Immunology, 2007, 19, 755-762.	4.0	16
29	Chromatin remodeling at the Th2 cytokine gene loci in human type 2 helper T cells. Molecular Immunology, 2007, 44, 2249-2256.	2.2	31
30	Hyperresponsive TH2 cells with enhanced nuclear factor-κB activation induce atopic dermatitis–like skin lesions in Nishiki-nezumi Cinnamon/Nagoya mice. Journal of Allergy and Clinical Immunology, 2006, 118, 725-733.	2.9	24
31	Crucial Role of MLL for the Maintenance of Memory T Helper Type 2 Cell Responses. Immunity, 2006, 24, 611-622.	14.3	134
32	Regulation of Th2 Cell Development by <i>Polycomb</i> Group Gene <i>bmi-1</i> through the Stabilization of GATA3. Journal of Immunology, 2006, 177, 7656-7664.	0.8	52
33	Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2286-2291.	7.1	136
34	Impaired GATA3-Dependent Chromatin Remodeling and Th2 Cell Differentiation Leading to Attenuated Allergic Airway Inflammation in Aging Mice. Journal of Immunology, 2006, 176, 2546-2554.	0.8	23
35	Ras-ERK MAPK Cascade Regulates GATA3 Stability and Th2 Differentiation through Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 2005, 280, 29409-29419.	3.4	141
36	Prolonged skin allograft survival by IL-10 gene-introduced CD4 T cell administration. International Immunology, 2005, 17, 759-768.	4.0	8

#	Article	IF	CITATIONS
37	Regulation of T helper type 2 cell differentiation by murine Schnurri-2. Journal of Experimental Medicine, 2005, 201, 397-408.	8.5	56
38	Differentiation of NK1 and NK2 Cells. Critical Reviews in Immunology, 2005, 25, 361-374.	0.5	26
39	STAT6-Dependent Differentiation and Production of IL-5 and IL-13 in Murine NK2 Cells. Journal of Immunology, 2004, 173, 4967-4975.	0.8	39
40	CD28 Costimulation Controls Histone Hyperacetylation of the Interleukin 5 Gene Locus in Developing Th2 Cells. Journal of Biological Chemistry, 2004, 279, 23123-23133.	3.4	38
41	Essential Role of GATA3 for the Maintenance of Type 2 Helper T (Th2) Cytokine Production and Chromatin Remodeling at the Th2 Cytokine Gene Loci. Journal of Biological Chemistry, 2004, 279, 26983-26990.	3.4	133
42	Interleukin (IL)-4-independent Maintenance of Histone Modification of the IL-4 Gene Loci in Memory Th2 Cells. Journal of Biological Chemistry, 2004, 279, 39454-39464.	3.4	55
43	TH1-biased immunity induced by exposure to Antarctic winter. Journal of Allergy and Clinical Immunology, 2003, 111, 1353-1360.	2.9	36
44	Mesenchymal expression of Foxl1, a winged helix transcriptional factor, regulates generation and maintenance of gut-associated lymphoid organs. Developmental Biology, 2003, 255, 278-289.	2.0	24
45	CD8 T Cell-Specific Downregulation of Histone Hyperacetylation and Gene Activation of the IL-4 Gene Locus by ROG, Repressor of GATA. Immunity, 2003, 19, 281-294.	14.3	79
46	CD69â€null mice protected from arthritis induced with antiâ€type II collagen antibodies. International Immunology, 2003, 15, 987-992.	4.0	59
47	src homology 2 domain–containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation. Journal of Clinical Investigation, 2003, 111, 109-119.	8.2	90
48	The Generation of Mature, Single-Positive Thymocytes In Vivo Is Dysregulated by CD69 Blockade or Overexpression. Journal of Immunology, 2002, 168, 87-94.	0.8	101
49	Identification of a Conserved GATA3 Response Element Upstream Proximal from the Interleukin-13 Gene Locus. Journal of Biological Chemistry, 2002, 277, 42399-42408.	3.4	157
50	Th1/Th2 cell differentiation of developing CD4 single-positive thymocytes. International Immunology, 2002, 14, 943-951.	4.0	9
51	Ras Activation in T Cells Determines the Development of Antigen-Induced Airway Hyperresponsiveness and Eosinophilic Inflammation. Journal of Immunology, 2002, 169, 2134-2140.	0.8	33
52	T Cell Hyporesponsiveness Induced by Oral Administration of Ovalbumin Is Associated with Impaired NFAT Nuclear Translocation and p27 <i>kip1</i> Degradation. Journal of Immunology, 2002, 169, 4723-4731.	0.8	39
53	Regulation of Th2 Cell Differentiation by mel-18, a Mammalian Polycomb Group Gene. Immunity, 2001, 15, 275-287.	14.3	107
54	Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. International Immunology, 2001, 13, 105-117.	4.0	78

Мотоко Y Кімига

#	Article	IF	CITATIONS
55	Impaired Ca/calcineurin pathway in in vivo anergized CD4 T cells. International Immunology, 2000, 12, 817-824.	4.0	25
56	T Cell Receptor–Induced Calcineurin Activation Regulates T Helper Type 2 Cell Development by Modifying the Interleukin 4 Receptor Signaling Complex. Journal of Experimental Medicine, 2000, 191, 1869-1880.	8.5	97
57	Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells. Journal of Experimental Medicine, 1999, 190, 783-792.	8.5	153