Salvador Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080069/publications.pdf

Version: 2024-02-01

414414 430874 1,105 45 18 32 citations h-index g-index papers 45 45 45 958 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Natural Polyhydroxy Flavonoids, Curcuminoids, and Synthetic Curcumin Analogs as α7 nAChRs Positive Allosteric Modulators. International Journal of Molecular Sciences, 2021, 22, 973.	4.1	6
2	1-(2′,5′-Dihydroxyphenyl)-3-(2-fluoro-4-hydroxyphenyl)-1-propanone (RGM079): A Positive Allosteric Modulator of α7 Nicotinic Receptors with Analgesic and Neuroprotective Activity. ACS Chemical Neuroscience, 2019, 10, 3900-3909.	3.5	11
3	A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology, 2019, 29, 1149-1160.e4.	3.9	22
4	Amino acid and peptide prodrugs of diphenylpropanones positive allosteric modulators of $\hat{l}\pm7$ nicotinic receptors with analgesic activity. European Journal of Medicinal Chemistry, 2018, 143, 157-165.	5.5	6
5	1,3-diphenylpropan-1-ones as allosteric modulators of $\hat{l}\pm7$ nACh receptors with analgesic and antioxidant properties. Future Medicinal Chemistry, 2016, 8, 731-749.	2.3	12
6	$\langle i \rangle N \langle i \rangle$ -Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists. ACS Chemical Neuroscience, 2016, 7, 1157-1165.	3.5	7
7	Effect of Triazine Derivatives on Neuronal Nicotinic Receptors. ACS Chemical Neuroscience, 2014, 5, 683-689.	3.5	5
8	Chalcones as positive allosteric modulators of $\hat{l}_{\pm}7$ nicotinic acetylcholine receptors: A new target for a privileged structure. European Journal of Medicinal Chemistry, 2014, 86, 724-739.	5.5	23
9	Expression and functional properties of $\hat{l}\pm7$ acetylcholine nicotinic receptors are modified in the presence of other receptor subunits. Journal of Neurochemistry, 2012, 123, 504-514.	3.9	20
10	Mutants of βâ€strand β3 and the loop B in the interface between α7 subunits of a homomeric acetylcholine receptor show functional and pharmacological alterations. Journal of Neurochemistry, 2011, 118, 968-978.	3.9	1
11	Substitutions of amino acids in the pore domain of homomeric $\hat{l}\pm7$ nicotinic receptors for analogous residues present in heteromeric receptors modify gating, rectification and binding properties. Journal of Neurochemistry, 2011, 119, 40-49.	3.9	4
12	A small cytoplasmic region adjacent to the fourth transmembrane segment of the $\hat{l}\pm7$ nicotinic receptor is essential for its biogenesis. FEBS Letters, 2011, 585, 2477-2480.	2.8	5
13	The loop between βâ€strands β2 and β3 and its interaction with the Nâ€terminal αâ€helix is essential for biogenesis of α7 nicotinic receptors. Journal of Neurochemistry, 2010, 112, 103-111.	3.9	8
14	Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor. Journal of Neurochemistry, 2010, 113, 1036-1045.	3.9	6
15	Role of loop 9 on the function of neuronal nicotinic receptors. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 654-659.	2.6	3
16	Singleâ€channel study of the binding–gating coupling in the slowly desensitizing chimeric α7â€5HT3A receptor. FEBS Letters, 2009, 583, 1045-1051.	2.8	2
17	Role of the Nâ€terminal αâ€helix in biogenesis of α7 nicotinic receptors. Journal of Neurochemistry, 2009, 108, 1399-1409.	3.9	20
18	Binding–gating coupling in a nondesensitizing α7 nicotinic receptor. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 410-416.	2.6	3

#	Article	IF	CITATIONS
19	Molecular characterization and localization of the RICâ€3 protein, an effector of nicotinic acetylcholine receptor expression. Journal of Neurochemistry, 2008, 105, 617-627.	3.9	28
20	Cytoplasmic regions adjacent to the M3 and M4 transmembrane segments influence expression and function of ?7 nicotinic acetylcholine receptors. A study with single amino acid mutants. Journal of Neurochemistry, 2007, 100, 406-415.	3.9	16
21	Nonâ€charged amino acids from three different domains contribute to link agonist binding to channel gating in α7 nicotinic acetylcholine receptors. Journal of Neurochemistry, 2007, 103, 725-735.	3.9	9
22	Interactions between loop 5 and \hat{l}^2 -strand \hat{l}^2 6' are involved in $\hat{l}\pm7$ nicotinic acetylcholine receptors channel gating. Journal of Neurochemistry, 2007, 104, 071027034430001-???.	3.9	7
23	Improved gating of a chimeric $\hat{l}\pm 7\text{-}5HT3$ Areceptor upon mutations at the M2-M3 extracellular loop. FEBS Letters, 2006, 580, 256-260.	2.8	15
24	Corrigendum to "Improved gating of a chimeric α7-5HT3Areceptor upon mutations at the M2-M3 extracellular loop―[FEBS Lett. 580 (2006) 256-260]. FEBS Letters, 2006, 580, 6518-6518.	2.8	0
25	Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. Journal of Molecular Neuroscience, 2006, 30, 153-156.	2.3	20
26	The cysteine-rich with EGF-Like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. Journal of Neurochemistry, 2005, 95, 1585-1596.	3.9	27
27	Mutations of a Conserved Lysine Residue in the N-Terminal Domain of α7 Nicotinic Receptors Affect Gating and Binding of Nicotinic Agonists. Molecular Pharmacology, 2005, 68, 1669-1677.	2.3	21
28	Dual Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2005, 280, 27062-27068.	3.4	89
29	Charged Amino Acids of the N-terminal Domain Are Involved in Coupling Binding and Gating in α7 Nicotinic Receptors. Journal of Biological Chemistry, 2005, 280, 6642-6647.	3.4	42
30	Potentiation of human $\hat{1}\pm4\hat{1}^22$ neuronal nicotinic receptors by a Flustra foliacea metabolite. Neuroscience Letters, 2005, 373, 144-149.	2.1	53
31	Conservation within the RIC-3 Gene Family. Journal of Biological Chemistry, 2003, 278, 34411-34417.	3.4	161
32	Effects of Ginsenoside Rg2 on Human Neuronal Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 1052-1059.	2.5	77
33	Role of the Large Cytoplasmic Loop of the α7 Neuronal Nicotinic Acetylcholine Receptor Subunit in Receptor Expression and Functionâ€. Biochemistry, 2002, 41, 7931-7938.	2.5	32
34	Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. European Journal of Pharmacology, 2002, 442, 37-45.	3.5	57
35	Effects of benzothiazepines on human neuronal nicotinic receptors expressed in Xenopus oocytes. British Journal of Pharmacology, 2002, 136, 183-192.	5.4	13
36	Multiple Roles of the Conserved Key Residue Arginine 209 in Neuronal Nicotinic Receptorsâ€. Biochemistry, 2001, 40, 8300-8306.	2.5	19

#	Article	lF	CITATION
37	A residue in the middle of the M2-M3 loop of the \hat{l}^2 4subunit specifically affects gating of neuronal nicotinic receptors. FEBS Letters, 1998, 433, 89-92.	2.8	30
38	Role of the Putative Transmembrane Segment M3 in Gating of Neuronal Nicotinic Receptorsâ€. Biochemistry, 1997, 36, 2709-2715.	2.5	27
39	Acetylcholine receptor subunit homomer formation requires compatibility between amino acid residues of the M 1 and M2 transmembrane segments. FEBS Letters, 1996, 399, 83-86.	2.8	12
40	\hat{l}_{\pm} -Bungarotoxin-sensitive Nicotinic Receptors on Bovine Chromaffin Cells: Molecular Cloning, Functional Expression and Alternative Splicing of the \hat{l}_{\pm} 7 Subunit. European Journal of Neuroscience, 1995, 7, 647-655.	2.6	101
41	A delayed rectifier potassium channel cloned from bovine adrenal medulla Functional analysis after expression in Xenopus oocytes and in a neuroblastoma cell line. FEBS Letters, 1994, 354, 173-176.	2.8	6
42	Role of Two Acetylcholine Receptor Subunit Domains in Homomer Formation and Intersubunit Recognition, as Revealed by .alpha.3 and .alpha.7 Subunit Chimeras. Biochemistry, 1994, 33, 15198-15203.	2.5	55
43	Molecular cloning and functional expression of potassium channels from the adrenal medulla. Biochemical Society Transactions, 1994, 22, 817-821.	3.4	0
44	Inactivation of Delayed Potassium Current in Cultured Bovine Chromaffin Cells. European Journal of Neuroscience, 1991, 3, 462-472.	2.6	4
45	Analysis and use of the perforated patch technique for recording ionic currents in pancreatic \hat{l}^2 -cells. Journal of Membrane Biology, 1991, 122, 177-187.	2.1	20