Alexandra B Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079725/publications.pdf

Version: 2024-02-01

125 papers 3,650 citations

30 h-index 56 g-index

148 all docs 148 docs citations

148 times ranked 6285 citing authors

#	Article	IF	CITATIONS
1	Monitoring pesticides in post-consumer containers by GC/TOFMS and HPLC/DAD after the triple rinse method. International Journal of Environmental Analytical Chemistry, 2024, 104, 867-878.	3.3	1
2	Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: the technological innovation patented review. International Journal of Environmental Science and Technology, 2022, 19, 5697-5720.	3.5	5
3	Irrigation of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity. Science of the Total Environment, 2022, 802, 149671.	8.0	15
4	Extraction of rare earth elements via electric field assisted mining applying deep eutectic solvents. Sustainable Chemistry and Pharmacy, 2022, 26, 100638.	3.3	0
5	Electrodialytic treatment of secondary mining resources for raw materials extraction: Reactor design assessment. Science of the Total Environment, 2021, 752, 141822.	8.0	6
6	Electro-bioremediation of a mixture of structurally different contaminants of emerging concern: Uncovering electrokinetic contribution. Journal of Hazardous Materials, 2021, 406, 124304.	12.4	11
7	Electrochemical Treatment of Effluent for the Removal of Contaminants of Emergent Concern and Culturable Microorganisms. Water (Switzerland), 2021, 13, 520.	2.7	4
8	Life Cycle Assessment of Electrodialytic Technologies to Recover Raw Materials from Mine Tailings. Sustainability, 2021, 13, 3915.	3.2	3
9	Cement-based mortars production applying mining residues treated with an electro-based technology and a thermal treatment: Technical and economic effects. Construction and Building Materials, 2021, 280, 122483.	7.2	6
10	Optimization of Electric Field Assisted Mining Process Applied to Rare Earths in Soils. Applied Sciences (Switzerland), 2021, 11, 6316.	2.5	3
11	Life Cycle Assessment of Mortars Produced Partially Replacing Cement by Treated Mining Residues. Applied Sciences (Switzerland), 2021, 11, 7947.	2.5	2
12	Electrodialytic removal of tungsten and arsenic from secondary mine resources â€" Deep eutectic solvents enhancement. Science of the Total Environment, 2020, 710, 136364.	8.0	38
13	Effect of mining residues treated with an electrodialytic technology on cement-based mortars. Cleaner Engineering and Technology, 2020, 1, 100001.	4.0	7
14	Electrodialytic recovery of rare earth elements from coal ashes. Electrochimica Acta, 2020, 359, 136934.	5.2	24
15	Electrodialytic Hydrogen Production and Critical Raw Materials Recovery from Secondary Resources. Water (Switzerland), 2020, 12, 1262.	2.7	10
16	Emerging organic contaminants in soil irrigated with effluent: electrochemical technology as a remediation strategy. Science of the Total Environment, 2020, 743, 140544.	8.0	20
17	Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 2020, 247, 125758.	8.2	37
18	Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. Nanomaterials, 2020, 10, 640.	4.1	20

#	Article	IF	CITATIONS
19	Overview of mining residues incorporation in construction materials and barriers for full-scale application. Journal of Building Engineering, 2020, 29, 101215.	3.4	21
20	Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters. Environmental Pollution, 2019, 253, 625-635.	7.5	26
21	Triclosan Detection in Aqueous Environmental Matrices by Thin-Films Sensors. Proceedings (mdpi), 2019, 15, .	0.2	0
22	Exploring hydrogen production for self-energy generation in electroremediation: A proof of concept. Applied Energy, 2019, 255, 113839.	10.1	14
23	Electrodialytic Arsenic Removal from Bulk and Pre-treated Soil. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	4
24	Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring. Sensors, 2019, 19, 5349.	3.8	14
25	Sustainability of construction materials: Electrodialytic technology as a tool for mortars production. Journal of Hazardous Materials, 2019, 363, 421-427.	12.4	10
26	Overview of electronic tongue sensing in environmental aqueous matrices: potential for monitoring emerging organic contaminants. Environmental Reviews, 2019, 27, 202-214.	4.5	29
27	Electro-technologies for the removal of 2,4,6-trichloroanisole from naturally contaminated cork discs: Reactor design and proof of concept. Chemical Engineering Journal, 2019, 361, 80-88.	12.7	3
28	Leaching of Cr from wood ash – discussion based on different extraction procedures. , 2019, , 408-413.		0
29	Electrodialytic treatment of sewage sludge: influence on microbiological community. International Journal of Environmental Science and Technology, 2018, 15, 1103-1112.	3.5	4
30	Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides. Environmental Science and Pollution Research, 2018, 25, 35928-35935.	5. 3	11
31	Electrodialytic 2-compartment cells for emerging organic contaminants removal from effluent. Journal of Hazardous Materials, 2018, 358, 467-474.	12.4	11
32	Analysis of Alkylphenols and Phthalates in Vegetables Using SPME and Comprehensive Two-dimensional Gas Chromatography. Current Chromatography, 2018, 5, 65-71.	0.3	1
33	Electrodialytic phosphorus recovery from sewage sludge ash under kinetic control. Electrochimica Acta, 2018, 287, 49-59.	5.2	18
34	Combination of inclusive and differential \$\$ mathrm{t}overline{mathrm{t}} \$\$ charge asymmetry measurements using ATLAS and CMS data at \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	7
35	Shrinkage of self-compacting concrete. A comparative analysis. Journal of Building Engineering, 2017, 9, 117-124.	3.4	22
36	Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater. Environmental Science and Pollution Research, 2017, 24, 7208-7215.	5 . 3	8

#	Article	IF	CITATIONS
37	Influence of the cell design in the electroremoval of PPCPs from soil slurry. Chemical Engineering Journal, 2017, 326, 162-168.	12.7	15
38	Remediation of Pharmaceutical and Personal Care Products (PPCPs) in Constructed Wetlands: Applicability and New Perspectives., 2017,, 277-292.		5
39	Phosphorus Recovery in Sewage Sludge by Electrokinetic Based Technologies: A Multivariate and Circular Economy View. Waste and Biomass Valorization, 2017, 8, 1587-1596.	3.4	10
40	Electrodialytic treatment of sewage sludge: Current intensity influence on phosphorus recovery and organic contaminants removal. Chemical Engineering Journal, 2016, 306, 1058-1066.	12.7	36
41	Electrically induced displacement transport of immiscible oil in saline sediments. Journal of Hazardous Materials, 2016, 313, 185-192.	12.4	21
42	Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source. Waste Management, 2016, 52, 193-201.	7.4	15
43	Nanoremediation Coupled to Electrokinetics for PCB Removal from Soil., 2016,, 331-350.		9
44	Electrochemical Process for Phosphorus Recovery from Wastewater Treatment Plants., 2016,, 129-141.		0
45	Removal of Pharmaceutical and Personal Care Products in Aquatic Plant-Based Systems., 2016,, 351-372.		0
46	Electrokinetics Across Disciplines and Continents. , 2016, , .		19
47	Electrokinetic Soil Remediation: An Overview. , 2016, , 3-18.		6
48	Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media., 2016,, 279-294.		2
49	Incorporation of Different Fly Ashes from MSWI as Substitute for Cement in Mortar: An Overview of the Suitability of Electrodialytic Pre-treatment., 2016,, 225-247.		5
50	Phytoremediation Coupled to Electrochemical Process for Arsenic Removal from Soil., 2016,, 313-329.		1
51	Electrokinetically Enabled De-swelling of Clay. , 2016, , 43-56.		3
52	The Kinetic Parameters Evaluation for the Adsorption Processes at "Liquid–Solid―Interface., 2016,, 81-109.		3
53	Life Cycle Assessment of Soil and Groundwater Remediation: Groundwater Impacts of Electrokinetic Remediation., 2016,, 173-202.		0
54	Electrochemical Process for Phosphorus Recovery from Water Treatment Plants., 2016,, 113-128.		0

#	Article	IF	CITATIONS
55	Quantitative Analysis of Endocrine Disruptors by Comprehensive Two-Dimensional Gas Chromatography. Journal of the Brazilian Chemical Society, 2015, , .	0.6	O
56	Electrochemical desalination of historic Portuguese tiles–ÂRemoval of chlorides, nitrates and sulfates. Journal of Cultural Heritage, 2015, 16, 712-718.	3.3	4
57	Microbial diversity observed during hemp retting. Applied Microbiology and Biotechnology, 2015, 99, 4471-4484.	3.6	65
58	Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. Journal of Environmental Management, 2015, 151, 550-555.	7.8	32
59	Potential of the electrodialytic process for emerging organic contaminants remediation and phosphorus separation from sewage sludge. Electrochimica Acta, 2015, 181, 109-117.	5.2	30
60	Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension $\hat{a} \in \text{``test of a new two compartment experimental cell.}$ Electrochimica Acta, 2015, 181, 73-81.	5.2	48
61	ELECTRODIALYTIC PROCESS OF NANOFILTRATION CONCENTRATES – PHOSPHORUS RECOVERY AND MICROCYSTINS REMOVAL. Electrochimica Acta, 2015, 181, 200-207.	5.2	14
62	Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Chemosphere, 2015, 131, 157-163.	8.2	33
63	Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochimica Acta, 2015, 181, 5-12.	5.2	14
64	Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil – Potential of enhanced phytotechnologies. Chemical Engineering Journal, 2015, 262, 563-570.	12.7	31
65	Phytoremediation and the Electrokinetic Process: Potential Use for the Phytoremediation of Antimony and Arsenic., 2015, , 199-209.		6
66	Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environmental Science and Pollution Research, 2014, 21, 6221-6227.	5.3	30
67	Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere, 2014, 99, 171-179.	8.2	14
68	Modeling of Electric Double-Layers Including Chemical Reaction Effects. Electrochimica Acta, 2014, 150, 263-268.	5.2	22
69	Assessment of combined electro–nanoremediation of molinate contaminated soil. Science of the Total Environment, 2014, 493, 178-184.	8.0	30
70	Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. Journal of Colloid and Interface Science, 2014, 433, 189-195.	9.4	55
71	Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management, 2014, 34, 886-892.	7.4	125
72	Electrokinetic remediation of six emerging organic contaminants from soil. Chemosphere, 2014, 117, 124-131.	8.2	59

#	Article	IF	CITATIONS
73	Phosphorus Recovery from a Water Reservoir–Potential of Nanofiltration Coupled to Electrodialytic Process. Waste and Biomass Valorization, 2013, 4, 675-681.	3.4	5
74	Enhanced Transport and Transformation of Zerovalent Nanoiron in Clay Using Direct Electric Current. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	25
75	Computing multi-species chemical equilibrium with an algorithm based on the reaction extents. Computers and Chemical Engineering, 2013, 58, 135-143.	3.8	32
76	Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments. Electrochimica Acta, 2013, 89, 436-444.	5.2	40
77	Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of the Total Environment, 2013, 445-446, 237-260.	8.0	291
78	Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet. Mediators of Inflammation, 2013, 2013, 1-8.	3.0	70
79	Modeling of electrokinetic desalination of bricks. Electrochimica Acta, 2012, 86, 213-222.	5.2	34
80	Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere, 2012, 87, 1077-1090.	8.2	168
81	Removal of organic contaminants from soils by an electrokinetic process: The case of molinate and bentazone. Experimental and modeling. Separation and Purification Technology, 2011, 79, 193-203.	7.9	64
82	Modeling of electrokinetic processes by finite element integration of the Nernst–Planck–Poisson system of equations. Separation and Purification Technology, 2011, 79, 183-192.	7.9	47
83	Electrokinetic removal of creosote from treated timber waste: a comprehensive gas chromatographic view. Journal of Applied Electrochemistry, 2010, 40, 1183-1193.	2.9	15
84	Experimental and modeling of the electrodialytic and dialytic treatment of a fly ash containing Cd, Cu and Pb. Journal of Applied Electrochemistry, 2010, 40, 1689-1697.	2.9	10
85	Assessing fly ash treatment: Remediation and stabilization of heavy metals. Journal of Environmental Management, 2010, 95 Suppl, S110-5.	7.8	16
86	Application of biregressional designs to electrodialytic removal of heavy metals from contaminated matrices. Discussiones Mathematicae Probability and Statistics, 2010, 30, 123.	0.1	0
87	Electroremediation of straw and co-combustion ash under acidic conditions. Journal of Hazardous Materials, 2009, 161, 1003-1009.	12.4	12
88	Electrodialytic Remediation of Soil Slurry–Removal of Cu, Cr, and As. Separation Science and Technology, 2009, 44, 2245-2268.	2.5	15
89	Qualitative mass spectrometric analysis of the volatile fraction of creosote-treated railway wood sleepers by using comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2008, 1178, 215-222.	3.7	30
90	Characterization of fly ash from bio and municipal waste. Biomass and Bioenergy, 2008, 32, 277-282.	5.7	78

#	Article	IF	CITATIONS
91	Electrodialytic remediation of suspended mine tailings. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 832-836.	1.7	16
92	Electrodialytic removal of Cd from straw ash in a pilot plant. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 844-851.	1.7	7
93	Preliminary treatment of MSW fly ash as a way of improving electrodialytic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 837-843.	1.7	24
94	Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips. Chemosphere, 2007, 66, 1716-1726.	8.2	26
95	Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochimica Acta, 2007, 52, 3420-3426.	5.2	45
96	Location model for CCA-treated wood waste remediation units using GIS and clustering methods. Environmental Modelling and Software, 2007, 22, 1788-1795.	4.5	13
97	Diagnostic analysis of electrodialysis in mine tailing materials. Electrochimica Acta, 2007, 52, 3406-3411.	5.2	27
98	Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biology and Biochemistry, 2007, 39, 1375-1382.	8.8	90
99	Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant. Science of the Total Environment, 2006, 364, 45-54.	8.0	26
100	Biosorption of arsenic(V) with Lessonia nigrescens. Minerals Engineering, 2006, 19, 486-490.	4.3	143
101	Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water. Journal of Chemical Technology and Biotechnology, 2006, 81, 553-559.	3.2	30
102	Relationship Between Cu and Zn Extractable Foliar Contents and BCR Sequential Extraction in Soil Treated with Organic Amendments. Environmental Technology (United Kingdom), 2006, 27, 1357-1367.	2.2	10
103	Electrodialytic remediation of CCA-treated waste wood in pilot scale. Engineering Geology, 2005, 77, 331-338.	6. 3	28
104	Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Engineering Geology, 2005, 77, 317-329.	6.3	35
105	Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Engineering Geology, 2005, 77, 339-347.	6. 3	62
106	Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste: application to sawdust. Wood Science and Technology, 2005, 39, 291-309.	3.2	16
107	Copper and Chromium Electrodialytic Migration in CCA-Treated Timber Waste. Water, Air, and Soil Pollution, 2005, 160, 27-39.	2.4	7
108	Electrodialytic Removal of Cu, Cr and As from Treated Wood. , 2005, , 235-241.		2

#	Article	IF	Citations
109	Effect of Major Constituents of MSW Fly Ash During Electrodialytic Remediation of Heavy Metals. Separation Science and Technology, 2005, 40, 2007-2019.	2.5	16
110	Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine Chemosphere, 2005, 59, 1229-1239.	8.2	105
111	Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I Journal of Hazardous Materials, 2004, 107, 103-113.	12.4	19
112	Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials, 2003, 96, 201-216.	12.4	387
113	Electrodialytic Removal of Heavy Metals from Different Solid Waste Products. Separation Science and Technology, 2003, 38, 1269-1289.	2.5	36
114	Heavy metals in MSW incineration fly ashes. European Physical Journal Special Topics, 2003, 107, 463-466.	0.2	12
115	Removal of arsenic from toxic ash after combustion of impregnated wood. European Physical Journal Special Topics, 2003, 107, 993-996.	0.2	3
116	Effects from different types of construction refuse in the soil on electrodialytic remediation. Journal of Hazardous Materials, 2002, 91, 205-219.	12.4	16
117	A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes. Journal of Hazardous Materials, 2002, 94, 147-160.	12.4	34
118	Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. Journal of Hazardous Materials, 2001, 85, 291-299.	12.4	72
119	Electrodialytic Removal of Cu, Cr, and As from Chromated Copper Arsenate-Treated Timber Waste. Environmental Science & Environ	10.0	114
120	An application of discriminant analysis to pattern recognition of selected contaminated soil features in thin sections. Geoderma, 1997, 76, 253-262.	5.1	3
121	A dynamic model for the electrokinetic removal of copper from a polluted soil. Journal of Hazardous Materials, 1997, 56, 257-271.	12.4	70
122	Electrokinetic Removal of Herbicides from Soils., 0,, 249-264.		0
123	Phosphorus recovery from waters using nanofiltration. Desalination and Water Treatment, 0, , 1-8.	1.0	5
124	Applying Chemometrics to Evaluate Tungsten Mining Residues Potential As Partial Cement Replacement. KnE Engineering, $0, , .$	0.1	1
125	Modelling of Electrokinetic Processes in Civil and Environmental Engineering Applications. , 0, , .		1