
Joao V Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of antibacterial compounds that constrain evolutionary pathways to resistance. ELife, 2021, 10, .	6.0	12
2	Switching an active site helix in dihydrofolate reductase reveals limits to subdomain modularity. Biophysical Journal, 2021, 120, 4738-4750.	0.5	0
3	Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity. Protein Science, 2019, 28, 1359-1367.	7.6	3
4	Proteostasis Environment Shapes Higher-Order Epistasis Operating on Antibiotic Resistance. Genetics, 2019, 212, 565-575.	2.9	30
5	Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak. ELife, 2019, 8, .	6.0	36
6	Differential Enzyme Flexibility Probed Using Solid-State Nanopores. ACS Nano, 2018, 12, 4494-4502.	14.6	83
7	Stability of the Influenza Virus Hemagglutinin Protein Correlates with Evolutionary Dynamics. MSphere, 2018, 3, .	2.9	31
8	Evolution on the Biophysical Fitness Landscape of an RNA Virus. Molecular Biology and Evolution, 2018, 35, 2390-2400.	8.9	45
9	Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant <i>Escherichia coli</i> Escape Variants. ACS Chemical Biology, 2017, 12, 1848-1857.	3.4	22
10	Free Superoxide is an Intermediate in the Production of H ₂ O ₂ by Copper(I)â€Aβ Peptide and O ₂ . Angewandte Chemie, 2016, 128, 1097-1101.	2.0	18
11	Free Superoxide is an Intermediate in the Production of H ₂ O ₂ by Copper(I)â€Aβ Peptide and O ₂ . Angewandte Chemie - International Edition, 2016, 55, 1085-1089.	13.8	95
12	Biophysical principles predict fitness landscapes of drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1470-8.	7.1	132
13	OP028. Oral delivery of a new class of non-antibody protein scaffold Nanofitins targeting TNF-alpha shows a strong preventive and curative anti-inflammatory effect in models of inflammatory bowel diseases Journal of Crohn's and Colitis, 2015, 9, S17-S18.	1.3	0
14	Mo1687 Oral Delivery of a New Class of Non-Antibody Protein Scaffold Nanofitins Targeting TNF-Alpha Shows a Strong Preventive and Curative Anti-Inflammatory Effect in Models of Inflammatory Bowel Diseases. Gastroenterology, 2015, 148, S-685.	1.3	0
15	On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions. RSC Advances, 2015, 5, 3386-3389.	3.6	54
16	Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Analytical Biochemistry, 2014, 458, 69-71.	2.4	289
17	Structural–functional evaluation of ionic liquid libraries for the design of co-solvents in lipase-catalysed reactions. Green Chemistry, 2014, 16, 4520-4523.	9.0	40
18	Ethylmalonic Encephalopathy ETHE1 R163W/R163Q Mutations Alter Protein Stability and Redox Properties of the Iron Centre. PLoS ONE, 2014, 9, e107157.	2.5	19

JOAO V RODRIGUES

#	Article	IF	CITATIONS
19	Cofactors and Metabolites as Protein Folding Helpers in Metabolic Diseases. Current Topics in Medicinal Chemistry, 2013, 12, 2546-2559.	2.1	33
20	Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1284-1292.	3.8	14
21	Mechanism of superoxide and hydrogen peroxide generation by human electron-transfer flavoprotein and pathological variants. Free Radical Biology and Medicine, 2012, 53, 12-19.	2.9	56
22	CHAPTER 37. Riboflavin and <i>\hat{l}^2</i> oxidation Flavoenzymes. Food and Nutritional Components in Focus, 2012, , 611-632.	0.1	0
23	Protein stability in an ionic liquid milieu: on the use of differential scanning fluorimetry. Physical Chemistry Chemical Physics, 2011, 13, 13614.	2.8	69
24	Cofactors and metabolites as potential stabilizers of mitochondrial acyl-CoA dehydrogenases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1658-1663.	3.8	36
25	Enhanced superoxide and hydrogen peroxide detection in biological assays. Free Radical Biology and Medicine, 2010, 49, 61-66.	2.9	40
26	Reductive elimination of superoxide: Structure and mechanism of superoxide reductases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 285-297.	2.3	51
27	Purification, crystallization and X-ray crystallographic analysis ofArchaeoglobus fulgidusneelaredoxin. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 316-319.	0.7	2
28	Role of Flavinylation in a Mild Variant of Multiple Acyl-CoA Dehydrogenation Deficiency. Journal of Biological Chemistry, 2009, 284, 4222-4229.	3.4	67
29	Resonance Raman study of the superoxide reductase from Archaeoglobus fulgidus, E12 mutants and a †̃natural variant'. Physical Chemistry Chemical Physics, 2009, 11, 1809.	2.8	13
30	Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand. Journal of Biological Inorganic Chemistry, 2008, 13, 219-228.	2.6	24
31	Kinetics of electron transfer from NADH to the Escherichia coli nitric oxide reductase flavorubredoxin. FEBS Journal, 2007, 274, 677-686.	4.7	15
32	Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin. Journal of Biological Inorganic Chemistry, 2007, 12, 248-256.	2.6	35
33	Superoxide Reduction Mechanism of Archaeoglobus fulgidus One-Iron Superoxide Reductase. Biochemistry, 2006, 45, 9266-9278.	2.5	45
34	Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus. Biochemical and Biophysical Research Communications, 2005, 329, 1300-1305.	2.1	32