## Heejun Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079372/publications.pdf Version: 2024-02-01



HEELLIN CHANC

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research, 2008, 42, 3285-3304.                                                                                                    | 11.3 | 396       |
| 2  | Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resources Research, 2011, 47, .                                                                                            | 4.2  | 289       |
| 3  | Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. Journal of Hazardous Materials, 2012, 209-210, 48-58.                                                    | 12.4 | 235       |
| 4  | A review of hydrological modelling of basin-scale climate change and urban development impacts.<br>Progress in Physical Geography, 2009, 33, 650-671.                                                                 | 3.2  | 191       |
| 5  | Rates of urbanisation and the resiliency of air and water quality. Science of the Total Environment, 2008, 400, 238-256.                                                                                              | 8.0  | 176       |
| 6  | Defining Extreme Events: A Crossâ€Disciplinary Review. Earth's Future, 2018, 6, 441-455.                                                                                                                              | 6.3  | 167       |
| 7  | The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrological Processes, 2009, 23, 805-815.                                       | 2.6  | 162       |
| 8  | Interdependent Infrastructure as Linked Social, Ecological, and Technological Systems (SETSs) to<br>Address Lockâ€in and Enhance Resilience. Earth's Future, 2018, 6, 1638-1659.                                      | 6.3  | 153       |
| 9  | Spatial and temporal changes in runoff caused by climate change in a complex large river basin in<br>Oregon. Journal of Hydrology, 2010, 388, 186-207.                                                                | 5.4  | 139       |
| 10 | Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water<br>Consumption in Hillsboro, Oregon <sup>1</sup> . Journal of the American Water Resources<br>Association, 2010, 46, 461-472. | 2.4  | 134       |
| 11 | Longâ€ŧerm trend of precipitation and runoff in Korean river basins. Hydrological Processes, 2008, 22,<br>2644-2656.                                                                                                  | 2.6  | 132       |
| 12 | Microplastics in freshwater: A global review of factors affecting spatial and temporal variations.<br>Environmental Pollution, 2022, 292, 118393.                                                                     | 7.5  | 129       |
| 13 | Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Applied Geography, 2014, 53, 402-416.                                                           | 3.7  | 122       |
| 14 | Pluvial flood risk and opportunities for resilience. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1302.                                                                                                          | 6.5  | 121       |
| 15 | Comparative streamflow characteristics in urbanizing basins in the Portland Metropolitan Area,<br>Oregon, USA. Hydrological Processes, 2007, 21, 211-222.                                                             | 2.6  | 100       |
| 16 | Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large<br>river basin, South Korea. Journal of Hydrology, 2018, 564, 26-40.                                                | 5.4  | 98        |
| 17 | Spatial Variations of Single-Family Residential Water Consumption in Portland, Oregon. Urban<br>Geography, 2010, 31, 953-972.                                                                                         | 3.0  | 95        |
| 18 | Spatial and Temporal Variations of Water Quality in the Han River and Its Tributaries, Seoul, Korea, 1993–2002. Water, Air, and Soil Pollution, 2005, 161, 267-284.                                                   | 2.4  | 94        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Potential Impacts of Climate Change on Flood-Induced Travel Disruptions: A Case Study of Portland,<br>Oregon, USA. Annals of the American Association of Geographers, 2010, 100, 938-952. | 3.0  | 93        |
| 20 | Climate Change, Landâ€Use Change, and Floods: Toward an Integrated Assessment. Geography Compass, 2008, 2, 1549-1579.                                                                     | 2.7  | 91        |
| 21 | Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects. Hydrology and Earth System Sciences, 2011, 15, 617-633.           | 4.9  | 91        |
| 22 | Assessment of urban flood vulnerability using the social-ecological-technological systems framework in six US cities. Sustainable Cities and Society, 2021, 68, 102786.                   | 10.4 | 88        |
| 23 | Spatial variations of summer precipitation trends in South Korea, 1973–2005. Environmental Research<br>Letters, 2007, 2, 045012.                                                          | 5.2  | 87        |
| 24 | Valuing ecological systems and services. F1000 Biology Reports, 2011, 3, 14.                                                                                                              | 4.0  | 84        |
| 25 | Impact of climate variation and change on Mid-Atlantic Region hydrology and water resources.<br>Climate Research, 2000, 14, 207-218.                                                      | 1.1  | 82        |
| 26 | A social-ecological-technological systems framework for urban ecosystem services. One Earth, 2022,<br>5, 505-518.                                                                         | 6.8  | 77        |
| 27 | What is responsible for increasing flood risks? The case of Gangwon Province, Korea. Natural<br>Hazards, 2009, 48, 339-354.                                                               | 3.4  | 72        |
| 28 | Potential changes in Korean water resources estimated by high-resolution climate simulation. Climate Research, 2008, 35, 213-226.                                                         | 1.1  | 69        |
| 29 | Assessment of future runoff trends under multiple climate change scenarios in the Willamette River<br>Basin, Oregon, USA. Hydrological Processes, 2011, 25, 258-277.                      | 2.6  | 67        |
| 30 | Local landscape predictors of maximum stream temperature and thermal sensitivity in the Columbia<br>River Basin, USA. Science of the Total Environment, 2013, 461-462, 587-600.           | 8.0  | 67        |
| 31 | Toward a formal definition of water scarcity in naturalâ€human systems. Water Resources Research,<br>2013, 49, 4506-4517.                                                                 | 4.2  | 65        |
| 32 | Impacts of Climate Change and Urban Development on Water Resources in the Tualatin River Basin,<br>Oregon. Annals of the American Association of Geographers, 2011, 101, 249-271.         | 3.0  | 63        |
| 33 | Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. Journal of Hydrology, 2012, 464-465, 233-248.                      | 5.4  | 62        |
| 34 | Identifying the Relationships Between Urban Water Consumption and Weather Variables in Seoul,<br>Korea. Physical Geography, 2009, 30, 324-337.                                            | 1.4  | 60        |
| 35 | Why Land Planners and Water Managers Don't Talk to One Another and Why They Should!. Society and Natural Resources, 2013, 26, 356-364.                                                    | 1.9  | 58        |
| 36 | THE EFFECTS OF CLIMATE CHANGE ON STREAM FLOW AND NUTRIENT LOADING1. Journal of the American Water Resources Association, 2001, 37, 973-985.                                               | 2.4  | 57        |

Heejun Chang

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Land-use, temperature, and single-family residential water use patterns in Portland, Oregon and<br>Phoenix, Arizona. Applied Geography, 2012, 35, 142-151.                                          | 3.7 | 57        |
| 38 | Valuing water quality in urban watersheds: A comparative analysis of Johnson Creek, Oregon, and<br>Burnt Bridge Creek, Washington. Water Resources Research, 2014, 50, 4254-4268.                   | 4.2 | 54        |
| 39 | Urban flood risk and green infrastructure: Who is exposed to risk and who benefits from investment?<br>A case study of three U.S. Cities. Landscape and Urban Planning, 2022, 223, 104417.          | 7.5 | 54        |
| 40 | Spatial Analysis of Water Use in Oregon, USA, 1985–2005. Water Resources Management, 2009, 23,<br>755-774.                                                                                          | 3.9 | 53        |
| 41 | Finding water scarcity amid abundance using human–natural system models. Proceedings of the<br>National Academy of Sciences of the United States of America, 2017, 114, 11884-11889.                | 7.1 | 53        |
| 42 | Response of discharge, TSS, and E. coli to rainfall events in urban, suburban, and rural watersheds.<br>Environmental Sciences: Processes and Impacts, 2014, 16, 2313-2324.                         | 3.5 | 51        |
| 43 | Climate change and waterâ€related ecosystem services: impacts of drought in california, usa. Ecosystem<br>Health and Sustainability, 2016, 2, .                                                     | 3.1 | 51        |
| 44 | Basin Hydrologic Response to Changes in Climate and Land Use: the Conestoga River Basin,<br>Pennsylvania. Physical Geography, 2003, 24, 222-247.                                                    | 1.4 | 50        |
| 45 | Socio-hydrology with hydrosocial theory: two sides of the same coin?. Hydrological Sciences<br>Journal, 2020, 65, 1443-1457.                                                                        | 2.6 | 49        |
| 46 | The influence of floodplain restoration on flow and sediment dynamics in an urban river. Journal of<br>Flood Risk Management, 2018, 11, S986.                                                       | 3.3 | 48        |
| 47 | Modeling the impact of land use and climate change on neighborhood-scale evaporation and<br>nighttime cooling: A surface energy balance approach. Landscape and Urban Planning, 2011, 103, 139-155. | 7.5 | 47        |
| 48 | Uncertainty assessment of climate change impacts for hydrologically distinct river basins. Journal of<br>Hydrology, 2012, 466-467, 73-87.                                                           | 5.4 | 47        |
| 49 | Climate change impacts on spatial patterns in drought risk in the Willamette River Basin, Oregon, USA.<br>Theoretical and Applied Climatology, 2012, 108, 355-371.                                  | 2.8 | 46        |
| 50 | Recent research approaches to urban flood vulnerability, 2006–2016. Natural Hazards, 2017, 88,<br>633-649.                                                                                          | 3.4 | 46        |
| 51 | Climate change, urban development, and community perception ofÂanÂextreme flood: A case study of<br>Vernonia, Oregon, USA. Applied Geography, 2014, 46, 137-146.                                    | 3.7 | 45        |
| 52 | Spatial analysis of urban flooding and extreme heat hazard potential in Portland, OR. International<br>Journal of Disaster Risk Reduction, 2019, 39, 101117.                                        | 3.9 | 41        |
| 53 | Multi-scale analysis of oxygen demand trends in an urbanizing Oregon watershed, USA. Journal of Environmental Management, 2008, 87, 567-581.                                                        | 7.8 | 39        |
| 54 | Tradeoffs Between Water Conservation and Temperature Amelioration In Phoenix and Portland:<br>Implications For Urban Sustainability. Urban Geography, 2012, 33, 1030-1054.                          | 3.0 | 37        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spatial variability of the response to climate change in regional groundwater systems – Examples from simulations in the Deschutes Basin, Oregon. Journal of Hydrology, 2013, 486, 187-201.                                     | 5.4 | 37        |
| 56 | Fracturing dams, fractured data: Empirical trends and characteristics of existing and removed dams in the United States. River Research and Applications, 2018, 34, 526-537.                                                    | 1.7 | 36        |
| 57 | Spatial analysis of landscape and sociodemographic factors associated with green stormwater infrastructure distribution in Baltimore, Maryland and Portland, Oregon. Science of the Total Environment, 2019, 664, 461-473.      | 8.0 | 36        |
| 58 | The Value of Urban Flood Modeling. Earth's Future, 2021, 9, e2020EF001739.                                                                                                                                                      | 6.3 | 36        |
| 59 | Land cover, climate, and the summer surface energy balance in Phoenix, AZ, and Portland, OR.<br>International Journal of Climatology, 2012, 32, 2020-2032.                                                                      | 3.5 | 35        |
| 60 | Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA. Hydrology and Earth System Sciences, 2014, 18, 1383-1395.                                        | 4.9 | 35        |
| 61 | Urbanization and floods in the Seoul Metropolitan area of South Korea: What old maps tell us.<br>International Journal of Disaster Risk Reduction, 2019, 37, 101186.                                                            | 3.9 | 35        |
| 62 | Hydroclimatological response to dynamically downscaled climate change simulations for Korean<br>basins. Climatic Change, 2010, 100, 485-508.                                                                                    | 3.6 | 34        |
| 63 | Analysis of long-term climate change on per capita water demand in urban versus suburban areas in<br>the Portland metropolitan area, USA. Journal of Hydrology, 2016, 538, 574-586.                                             | 5.4 | 34        |
| 64 | Spatial and temporal variations of microplastic concentrations in Portland's freshwater ecosystems.<br>Science of the Total Environment, 2022, 833, 155143.                                                                     | 8.0 | 33        |
| 65 | Vulnerability of Water Systems to the Effects of Climate Change and Urbanization: A Comparison of<br>Phoenix, Arizona and Portland, Oregon (USA). Environmental Management, 2013, 52, 179-195.                                  | 2.7 | 32        |
| 66 | Effects of land use change, wetland fragmentation, and best management practices on total<br>suspended solids concentrations in an urbanizing Oregon watershed, USA. Journal of Environmental<br>Management, 2021, 282, 111962. | 7.8 | 32        |
| 67 | Water quality during winter storm events in Spring Creek, Pennsylvania USA. Hydrobiologia, 2005, 544, 321-332.                                                                                                                  | 2.0 | 31        |
| 68 | Spatial analysis of annual runoff ratios and their variability across the contiguous U.S Journal of<br>Hydrology, 2014, 511, 387-402.                                                                                           | 5.4 | 31        |
| 69 | Hydrologic impacts of climate change in the Upper Clackamas River Basin, Oregon, USA. Climate<br>Research, 2007, 33, 143-157.                                                                                                   | 1.1 | 31        |
| 70 | Water resource impacts of climate change in southwestern Bulgaria. Geo Journal, 2002, 57, 159-168.                                                                                                                              | 3.1 | 29        |
| 71 | Spatial Patterns of <scp>M</scp> arch and <scp>S</scp> eptember Streamflow Trends in<br><scp>P</scp> acific <scp>N</scp> orthwest Streams, 1958–2008. Geographical Analysis, 2012, 44, 177-201.                                 | 3.5 | 29        |
| 72 | Water Supply, Demand, and Quality Indicators for Assessing the Spatial Distribution of Water<br>Resource Vulnerability in the Columbia River Basin. Atmosphere - Ocean, 2013, 51, 339-356.                                      | 1.6 | 28        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A review of spatial statistical approaches to modeling water quality. Progress in Physical Geography, 2019, 43, 801-826.                                                                                           | 3.2 | 27        |
| 74 | Determinants of single family residential water use across scales in four western US cities. Science of the Total Environment, 2017, 596-597, 451-464.                                                             | 8.0 | 26        |
| 75 | Monitoring the channel process of a stream restoration project in an urbanizing watershed: a case study of Kelley Creek, Oregon, USA. River Research and Applications, 2008, 24, 169-182.                          | 1.7 | 23        |
| 76 | Precipitation Intensity Trend Detection using Hourly and Daily Observations in Portland, Oregon.<br>Climate, 2017, 5, 10.                                                                                          | 2.8 | 23        |
| 77 | Spatial analysis of graffiti in San Francisco. Applied Geography, 2014, 54, 63-73.                                                                                                                                 | 3.7 | 22        |
| 78 | Vulnerability of Korean water resources to climate change and population growth. Water Science and Technology, 2007, 56, 57-62.                                                                                    | 2.5 | 20        |
| 79 | Urban water consumption and weather variation in the Portland, Oregon metropolitan area. Urban<br>Climate, 2014, 9, 1-18.                                                                                          | 5.7 | 19        |
| 80 | Using spatially explicit indicators to investigate watershed characteristics and stream temperature relationships. Science of the Total Environment, 2016, 551-552, 376-386.                                       | 8.0 | 19        |
| 81 | Dynamics of wetâ€season turbidity in relation to precipitation, discharge, and land cover in three urbanizing watersheds, Oregon. River Research and Applications, 2019, 35, 892-904.                              | 1.7 | 19        |
| 82 | Residents' perception of flood risk and urban stream restoration using multiâ€criteria decision<br>analysis. River Research and Applications, 2020, 36, 2078-2088.                                                 | 1.7 | 19        |
| 83 | Using GIS-based spatial analysis to determine urban greenspace accessibility for different racial<br>groups in the backdrop of COVID-19: a case study of four US cities. Geo Journal, 2022, 87, 4879-4899.         | 3.1 | 19        |
| 84 | Winter precipitation intensity and ENSO/PDO variability in the Willamette Valley of Oregon.<br>International Journal of Climatology, 2009, 29, 2033-2039.                                                          | 3.5 | 17        |
| 85 | Improving Higher-Order Thinking and Knowledge Retention in Environmental Science Teaching.<br>BioScience, 2014, 64, 40-48.                                                                                         | 4.9 | 17        |
| 86 | Effects of runoff sensitivity and catchment characteristics on regional actual evapotranspiration trends in the conterminous US. Environmental Research Letters, 2013, 8, 044002.                                  | 5.2 | 16        |
| 87 | Space and time dynamics of urban water demand in Portland, Oregon and Phoenix, Arizona. Stochastic<br>Environmental Research and Risk Assessment, 2015, 29, 1135-1147.                                             | 4.0 | 16        |
| 88 | Detecting change in precipitation indices using observed (1977–2016) and modeled future climate data<br>in Portland, Oregon, USA. Journal of Water and Climate Change, 2021, 12, 1135-1153.                        | 2.9 | 16        |
| 89 | A Simplified Basin Model For Simulating Runoff: The Struma River GIS. Professional Geographer, 2001, 53, 533-545.                                                                                                  | 1.8 | 15        |
| 90 | Present and Future Flood Hazard in the Lower Columbia River Estuary: Changing Flood Hazards in the<br>Portlandâ€Vancouver Metropolitan Area. Journal of Geophysical Research: Oceans, 2020, 125,<br>e2019JC015928. | 2.6 | 15        |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Stressors and Strategies for Managing Urban Water Scarcity: Perspectives from the Field. Water<br>(Switzerland), 2015, 7, 6775-6787.                                                                                | 2.7  | 14        |
| 92  | Development of Future Land Cover Change Scenarios in the Metropolitan Fringe, Oregon, U.S., with Stakeholder Involvement. Land, 2014, 3, 322-341.                                                                   | 2.9  | 13        |
| 93  | Facilitating collaborative urban water management through university-utility cooperation.<br>Sustainable Cities and Society, 2016, 27, 475-483.                                                                     | 10.4 | 13        |
| 94  | A community-engaged approach to transdisciplinary doctoral training in urban ecosystem services.<br>Sustainability Science, 2020, 15, 699-715.                                                                      | 4.9  | 13        |
| 95  | Understanding Urban Flood Resilience in the Anthropocene: A Social–Ecological–Technological<br>Systems (SETS) Learning Framework. Annals of the American Association of Geographers, 2021, 111,<br>837-857.         | 2.2  | 13        |
| 96  | Resident perceptions of urban stream restoration and water quality in South Korea. River Research and Applications, 2018, 34, 481-492.                                                                              | 1.7  | 11        |
| 97  | Spatial characteristics and frequency of citizen-observed pluvial flooding events in relation to storm size in Portland, Oregon. Urban Climate, 2019, 29, 100487.                                                   | 5.7  | 11        |
| 98  | Comparing the functional recognition of aesthetics, hydrology, and quality in urban stream<br>restoration through the framework of environmental perception. River Research and Applications,<br>2019, 35, 543-552. | 1.7  | 11        |
| 99  | Environmental and spatial factors affecting surface water quality in a Himalayan watershed, Central<br>Nepal. Environmental and Sustainability Indicators, 2021, 9, 100096.                                         | 3.3  | 11        |
| 100 | Assessing mechanisms of climate change impact on the upland forest water balance of the Willamette<br>River Basin, Oregon. Ecohydrology, 2017, 10, e1776.                                                           | 2.4  | 10        |
| 101 | Sources of contaminated flood sediments in a rural–urban catchment: Johnson Creek, Oregon.<br>Journal of Flood Risk Management, 2019, 12, .                                                                         | 3.3  | 10        |
| 102 | Dreams and Migration in South Korea's Border Region: Landscape Change and Environmental Impacts.<br>Annals of the American Association of Geographers, 2019, 109, 476-491.                                          | 2.2  | 9         |
| 103 | Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas<br>River Watershed, USA. Journal of Water and Climate Change, 2021, 12, 1454-1470.                               | 2.9  | 9         |
| 104 | Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns. Earth System Science Data, 2021, 13, 3979-3994.                                    | 9.9  | 9         |
| 105 | Climate Change and Stream Temperature in the Willamette River Basin: Implications for Fish Habitat.<br>World Scientific Series on Asia-Pacific Weather and Climate, 2018, , 119-132.                                | 0.2  | 9         |
| 106 | Relation Between Stream Temperature and Landscape Characteristics Using Distance Weighted<br>Metrics. Water Resources Management, 2018, 32, 1167-1192.                                                              | 3.9  | 8         |
| 107 | Land Use Change, Extreme Precipitation Events, and Flood Damage in South Korea: A Spatial Approach.<br>Journal of Extreme Events, 2020, 07, 2150001.                                                                | 1.1  | 7         |
| 108 | Building Water-Efficient Cities. Journal of the American Planning Association, 2019, 85, 511-524.                                                                                                                   | 1.7  | 6         |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Putting space into modeling landscape and water quality relationships in the Han River basin, South<br>Korea. Computers, Environment and Urban Systems, 2020, 81, 101461.     | 7.1 | 6         |
| 110 | Watershed Response to Climate Change and Fire-Burns in the Upper Umatilla River Basin, USA. Climate, 2017, 5, 7.                                                              | 2.8 | 5         |
| 111 | Modeling the system dynamics of irrigators' resilience to climate change in a glacier-influenced watershed. Hydrological Sciences Journal, 2021, 66, 1743-1757.               | 2.6 | 5         |
| 112 | The spatial relationship between patterns of disappeared streams and residential development in<br>Portland, Oregon, USA. Journal of Maps, 2022, 18, 210-218.                 | 2.0 | 5         |
| 113 | Geographical analysis of commercial motor vehicle hazardous materials crashes on the Oregon state<br>highway system. Environmental Hazards, 2011, 10, 171-184.                | 2.5 | 4         |
| 114 | Spatially-explicit assessment of flood risk caused by climate change in South Korea. KSCE Journal of<br>Civil Engineering, 2013, 17, 233-243.                                 | 1.9 | 3         |
| 115 | Socio-spatial analysis of residential water demand in Mexico City. Tecnologia Y Ciencias Del Agua, 2021,<br>12, 59-110.                                                       | 0.3 | 3         |
| 116 | The Right to Urban Streams: Quantitative Comparisons of Stakeholder Perceptions in Defining<br>Adaptive Stream Restoration. Sustainability, 2020, 12, 9500.                   | 3.2 | 2         |
| 117 | Transition of water quality policies in Oregon, USA and South Korea: A historical socio-hydrological approach. Hydrological Sciences Journal, 0, , .                          | 2.6 | 1         |
| 118 | The June 2021 Extreme Heat Event in Portland, OR, USA: Its Impacts on Ecosystems and Human Health and Potential Adaptation Strategies. Journal of Extreme Events, 2021, 08, . | 1.1 | 1         |
| 119 | Quantifying Hydrological Uncertainty for Rain- and Snow-Dominated Watersheds with Adaptation Strategy. , 2010, , .                                                            |     | 0         |
| 120 | Characterizing urban ecosystem services: integrating the biophysical and social dimensions of human-dominated landscapes. , 2014, , .                                         |     | 0         |
| 121 | Rapid land use change impacts on coastal ecosystem services: a South Korean case study. , 0, , 119-126.                                                                       |     | 0         |
| 122 | Seasonal variation in hydrologic performance of ecoroofs of multiple depths– a case study in<br>Portland, Oregon, USA. Urban Water Journal, 2021, 18, 128-135.                | 2.1 | 0         |