Gurdyal Besra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the Major Antigen of Mycobacterium tuberculosis in Cell Wall Biogenesis. Science, 1997, 276, 1420-1422.	6.0	701
2	Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12352-12357.	3.3	691
3	Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 2005, 18, 81-101.	5.7	577
4	CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature, 2007, 448, 44-49.	13.7	533
5	CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature, 2000, 404, 884-888.	13.7	436
6	Structural Requirements for Glycolipid Antigen Recognition by CD1b-Restricted T Cells. Science, 1997, 278, 283-286.	6.0	429
7	The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11919-11924.	3.3	417
8	Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Molecular Microbiology, 2004, 53, 391-403.	1.2	385
9	Cytological and Transcript Analyses Reveal Fat and Lazy Persister-Like Bacilli in Tuberculous Sputum. PLoS Medicine, 2008, 5, e75.	3.9	383
10	The crystal structure of human CD1d with and without α-galactosylceramide. Nature Immunology, 2005, 6, 819-826.	7.0	363
11	Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean. PLoS ONE, 2008, 3, e3426.	1.1	340
12	Apolipoprotein-mediated pathways of lipid antigen presentation. Nature, 2005, 437, 906-910.	13.7	323
13	Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nature Immunology, 2015, 16, 85-95.	7.0	315
14	Genome-Wide Comparison of Medieval and Modern <i>Mycobacterium leprae</i> . Science, 2013, 341, 179-183.	6.0	313
15	Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of Â-galactosylceramides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3383-3388.	3.3	308
16	Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. Journal of Clinical Investigation, 2011, 121, 1471-1483.	3.9	300
17	Invariant NKT cells reduce the immunosuppressive activity of influenza A virus–induced myeloid-derived suppressor cells in mice and humans. Journal of Clinical Investigation, 2008, 118, 4036-4048.	3.9	299
18	Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nature Immunology, 2011, 12, 966-974.	7.0	295

#	Article	IF	CITATIONS
19	The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Research, 2003, 31, 6516-6523.	6.5	285
20	Assembly of the Mycobacterial Cell Wall. Annual Review of Microbiology, 2015, 69, 405-423.	2.9	280
21	Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nature Immunology, 2011, 12, 1202-1211.	7.0	275
22	Mechanism of thioamide drug action against tuberculosis and leprosy. Journal of Experimental Medicine, 2007, 204, 73-78.	4.2	274
23	Activation of the Pro-drug Ethionamide Is Regulated in Mycobacteria. Journal of Biological Chemistry, 2000, 275, 28326-28331.	1.6	262
24	The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. Journal of Ethnopharmacology, 2002, 79, 57-67.	2.0	256
25	Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in <i>Mycobacterium tuberculosis</i> physiology and host–pathogen interaction. FEMS Microbiology Reviews, 2011, 35, 1126-1157.	3.9	246
26	The Methyl-Branched Fortifications of Mycobacterium tuberculosis. Chemistry and Biology, 2002, 9, 545-553.	6.2	242
27	Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. Journal of Experimental Medicine, 2011, 208, 1163-1177.	4.2	239
28	Mycolic Acid Structure Determines the Fluidity of the Mycobacterial Cell Wall. Journal of Biological Chemistry, 1996, 271, 29545-29551.	1.6	236
29	Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet, The, 2003, 361, 637-644.	6.3	232
30	Thiolactomycin and Related Analogues as Novel Anti-mycobacterial Agents Targeting KasA and KasB Condensing Enzymes inMycobacterium tuberculosis. Journal of Biological Chemistry, 2000, 275, 16857-16864.	1.6	231
31	A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry, 1995, 34, 4257-4266	1.2	227
32	The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. Journal of Experimental Medicine, 2007, 204, 1131-1144.	4.2	206
33	NK T cells provide lipid antigen-specific cognate help for B cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8339-8344.	3.3	205
34	Recognition of Lyso-Phospholipids by Human Natural Killer T Lymphocytes. PLoS Biology, 2009, 7, e1000228.	2.6	203
35	Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nature Immunology, 2012, 13, 44-50.	7.0	195
36	Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5157-5162.	3.3	194

#	Article	IF	CITATIONS
37	Structural basis of inhibition of <i>Mycobacterium tuberculosis</i> DprE1 by benzothiazinone inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11354-11359.	3.3	194
38	A Subset of Liver NK T Cells Is Activated during Leishmania donovani Infection by CD1d-bound Lipophosphoglycan. Journal of Experimental Medicine, 2004, 200, 895-904.	4.2	191
39	Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6630-6634.	3.3	190
40	A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in <i>Mycobacterium smegmatis</i> and <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2007, 65, 684-699.	1.2	190
41	TheMycobacterium tuberculosisFAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Molecular Microbiology, 2007, 64, 1442-1454.	1.2	188
42	Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2510-7.	3.3	188
43	CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nature Immunology, 2010, 11, 303-312.	7.0	186
44	Natural killer T cells in adipose tissue prevent insulin resistance. Journal of Clinical Investigation, 2012, 122, 3343-3354.	3.9	185
45	MmpL Genes Are Associated with Mycolic Acid Metabolism in Mycobacteria and Corynebacteria. Chemistry and Biology, 2012, 19, 498-506.	6.2	179
46	B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8345-8350.	3.3	178
47	Molecular Interaction of CD1b with Lipoglycan Antigens. Immunity, 1998, 8, 331-340.	6.6	177
48	Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21761-21766.	3.3	177
49	Overexpression ofinhA, but notkasA, confers resistance to isoniazid and ethionamide inMycobacterium smegmatis,M. bovisBCG andM. tuberculosis. Molecular Microbiology, 2002, 46, 453-466.	1.2	176
50	PPARÎ ³ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. Journal of Experimental Medicine, 2006, 203, 2351-2362.	4.2	176
51	Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 2015, 16, 819-828.	7.0	175
52	Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20490-20495.	3.3	173
53	A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2003, 47, 297-301.	1.4	171
54	Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nature Structural Biology, 2000, 7, 141-146.	9.7	170

#	Article	IF	CITATIONS
55	Mycobacterium tuberculosis pks12 Produces a Novel Polyketide Presented by CD1c to T Cells. Journal of Experimental Medicine, 2004, 200, 1559-1569.	4.2	166
56	Identification and Substrate Specificity of β-Ketoacyl (Acyl Carrier Protein) Synthase III (mtFabH) from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2000, 275, 28201-28207.	1.6	165
57	Identification of Novel Imidazo[1,2-a]pyridine Inhibitors Targeting M. tuberculosis QcrB. PLoS ONE, 2012, 7, e52951.	1.1	162
58	Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1143-52.	3.3	160
59	Acyl-CoA Carboxylases (accD2 and accD3), Together with a Unique Polyketide Synthase (Cg-pks), Are Key to Mycolic Acid Biosynthesis in Corynebacterianeae Such as Corynebacterium glutamicum and Mycobacterium tuberculosis. Journal of Biological Chemistry, 2004, 279, 44847-44857.	1.6	159
60	Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation. Immunity, 2009, 30, 888-898.	6.6	159
61	Lysosomal Trafficking, Antigen Presentation, and Microbial Killing Are Controlled by the Arf-like GTPase Arl8b. Immunity, 2011, 35, 182-193.	6.6	159
62	Biosynthesis of Mycobacterial Lipoarabinomannan. Journal of Biological Chemistry, 1997, 272, 18460-18466.	1.6	151
63	Galactan Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2001, 276, 26430-26440.	1.6	147
64	Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nature Immunology, 2002, 3, 435-442.	7.0	146
65	Unique Mechanism of Action of the Thiourea Drug Isoxyl on Mycobacterium tuberculosis. Journal of Biological Chemistry, 2003, 278, 53123-53130.	1.6	145
66	Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology, 2018, 145, 116-133.	0.7	145
67	Biosynthesis of the Linkage Region of the Mycobacterial Cell Wall. Journal of Biological Chemistry, 1996, 271, 7820-7828.	1.6	144
68	Cd1b-Mediated T Cell Recognition of a Glycolipid Antigen Generated from Mycobacterial Lipid and Host Carbohydrate during Infection. Journal of Experimental Medicine, 2000, 192, 965-976.	4.2	144
69	EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Molecular Microbiology, 2003, 51, 175-188.	1.2	144
70	Identification of a Novel Arabinofuranosyltransferase (AftA) Involved in Cell Wall Arabinan Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2006, 281, 15653-15661.	1.6	143
71	EthA, a Common Activator of Thiocarbamide-Containing Drugs Acting on Different Mycobacterial Targets. Antimicrobial Agents and Chemotherapy, 2007, 51, 1055-1063.	1.4	143
72	Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. Nature Chemical Biology, 2010, 6, 376-384.	3.9	141

#	Article	IF	CITATIONS
73	The Crystal Structure of Human CD1b with a Bound Bacterial Glycolipid. Journal of Immunology, 2004, 172, 2382-2388.	0.4	137
74	Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. Journal of Clinical Investigation, 2011, 121, 57-69.	3.9	137
75	An FHA Phosphoprotein Recognition Domain Mediates Protein EmbR Phosphorylation by PknH, a Ser/Thr Protein Kinase fromMycobacterium tuberculosisâ€. Biochemistry, 2003, 42, 15300-15309.	1.2	136
76	Synthesis of the Arabinose Donor .betaD-Arabinofuranosyl-1-monophosphoryldecaprenol, Development of a Basic Arabinosyl-Transferase Assay, and Identification of Ethambutol as an Arabinosyl Transferase Inhibitor. Journal of the American Chemical Society, 1995, 117, 11829-11832.	6.6	135
77	Deletion of Cg-emb in Corynebacterianeae Leads to a Novel Truncated Cell Wall Arabinogalactan, whereas Inactivation of Cg-ubiA Results in an Arabinan-deficient Mutant with a Cell Wall Galactan Core. Journal of Biological Chemistry, 2005, 280, 32362-32371.	1.6	132
78	Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1827-1832.	3.3	129
79	Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. Journal of Experimental Medicine, 2006, 203, 2293-2303.	4.2	127
80	Functional Role of the PE Domain and Immunogenicity of the <i>Mycobacterium tuberculosis</i> Triacylglycerol Hydrolase LipY. Infection and Immunity, 2008, 76, 127-140.	1.0	127
81	The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cellular Microbiology, 2008, 10, 930-944.	1.1	124
82	Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3330-3335.	3.3	123
83	Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] Analogues with Bactericidal Efficacy against Mycobacterium tuberculosis Targeting MmpL3. PLoS ONE, 2013, 8, e60933.	1.1	123
84	Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. DMM Disease Models and Mechanisms, 2011, 4, 526-536.	1.2	122
85	Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology (United Kingdom), 2005, 151, 1359-1368.	0.7	116
86	Antimycobacterial Activities of Isoxyl and New Derivatives through the Inhibition of Mycolic Acid Synthesis. Antimicrobial Agents and Chemotherapy, 1999, 43, 1042-1051.	1.4	114
87	Identification of a Novel Arabinofuranosyltransferase AftB Involved in a Terminal Step of Cell Wall Arabinan Biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. Journal of Biological Chemistry, 2007, 282, 14729-14740.	1.6	114
88	Biochemical Characterization of Acyl Carrier Protein (AcpM) and Malonyl-CoA:AcpM Transacylase (mtFabD), Two Major Components ofMycobacterium tuberculosis Fatty Acid Synthase II. Journal of Biological Chemistry, 2001, 276, 27967-27974.	1.6	113
89	3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2010, 75, 107-121	1.2	113
90	Inhibition of UDP-Gal Mutase and Mycobacterial Galactan Biosynthesis by Pyrrolidine Analogues of Galactofuranose. Tetrahedron Letters, 1997, 38, 6733-6736.	0.7	112

#	Article	IF	CITATIONS
91	Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochemical Journal, 2002, 364, 423-430.	1.7	112
92	Thiacetazone, an Antitubercular Drug that Inhibits Cyclopropanation of Cell Wall Mycolic Acids in Mycobacteria. PLoS ONE, 2007, 2, e1343.	1.1	112
93	Cord Factor and Peptidoglycan Recapitulate the Th17-Promoting Adjuvant Activity of Mycobacteria through Mincle/CARD9 Signaling and the Inflammasome. Journal of Immunology, 2013, 190, 5722-5730.	0.4	112
94	Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nature Immunology, 2011, 12, 827-833.	7.0	111
95	Biosynthesis of the Galactan Component of the Mycobacterial Cell Wall. Journal of Biological Chemistry, 2000, 275, 33890-33897.	1.6	108
96	Structural Study of Lipomannan and Lipoarabinomannan fromMycobacterium chelonae. Journal of Biological Chemistry, 2002, 277, 30635-30648.	1.6	107
97	Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochemical Journal, 2002, 365, 441-450.	1.7	107
98	A Molecular Basis for the Exquisite CD1d-Restricted Antigen Specificity and Functional Responses of Natural Killer T Cells. Immunity, 2011, 34, 327-339.	6.6	107
99	MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella ParatyphiÂA. Nature Communications, 2018, 9, 253.	5.8	107
100	The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis, 2004, 84, 263-274.	0.8	106
101	A mycolic acid–specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. Journal of Clinical Investigation, 2011, 121, 2493-2503.	3.9	106
102	A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. Journal of Experimental Medicine, 2006, 203, 661-673.	4.2	105
103	Truncated Structural Variants of Lipoarabinomannan in Ethambutol Drug-resistant Strains of Mycobacterium smegmatis. Journal of Biological Chemistry, 1996, 271, 28682-28690.	1.6	104
104	The pimB Gene of Mycobacterium tuberculosis Encodes a Mannosyltransferase Involved in Lipoarabinomannan Biosynthesis. Journal of Biological Chemistry, 1999, 274, 31625-31631.	1.6	104
105	Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis. MBio, 2013, 4, e00222-13.	1.8	103
106	The Condensing Activities of the Mycobacterium tuberculosis Type II Fatty Acid Synthase Are Differentially Regulated by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 30094-30103.	1.6	101
107	Innate Recognition of Cell Wall β-Glucans Drives Invariant Natural Killer T Cell Responses against Fungi. Cell Host and Microbe, 2011, 10, 437-450.	5.1	101
108	Metagenomic Analysis of Tuberculosis in a Mummy. New England Journal of Medicine, 2013, 369, 289-290.	13.9	101

#	Article	IF	CITATIONS
109	A <i>Mycobacterium tuberculosis</i> Mutant Lacking the <i>groEL</i> Homologue <i>cpn60.1</i> Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 2008, 76, 1535-1546.	1.0	100
110	Comparative cell wall core biosynthesis in the mycolated pathogens,Mycobacterium tuberculosisandCorynebacterium diphtheriae. FEMS Microbiology Reviews, 2004, 28, 225-250.	3.9	99
111	Crystal Structure of the TetR/CamR Family Repressor Mycobacterium tuberculosis EthR Implicated in Ethionamide Resistance. Journal of Molecular Biology, 2004, 340, 1095-1105.	2.0	99
112	Interplay of Cytokines and Microbial Signals in Regulation of CD1d Expression and NKT Cell Activation. Journal of Immunology, 2005, 175, 3584-3593.	0.4	99
113	The Two Carboxylases of Corynebacterium glutamicum Essential for Fatty Acid and Mycolic Acid Synthesis. Journal of Bacteriology, 2007, 189, 5257-5264.	1.0	99
114	Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis. Biochemistry, 1992, 31, 9832-9837.	1.2	98
115	A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen–recognition properties. Nature Immunology, 2011, 12, 616-623.	7.0	97
116	Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5551-5556.	3.3	96
117	Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. Journal of Immunology, 2017, 199, 2631-2638.	0.4	96
118	Essential role for autophagy during invariant NKT cell development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5678-87.	3.3	95
119	Arylamine N-Acetyltransferase Is Required for Synthesis of Mycolic Acids and Complex Lipids in Mycobacterium bovis BCG and Represents a Novel Drug Target. Journal of Experimental Medicine, 2004, 199, 1191-1199.	4.2	93
120	Mycolic Acid Modification by the mmaA4 Gene of M. tuberculosis Modulates IL-12 Production. PLoS Pathogens, 2008, 4, e1000081.	2.1	92
121	Identification of the apparent carrier in mycolic acid synthesis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12735-12739.	3.3	91
122	CD1d-restricted T cell activation by nonlipidic small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13578-13583.	3.3	91
123	Conserved and Heterogeneous Lipid Antigen Specificities of CD1d-Restricted NKT Cell Receptors. Journal of Immunology, 2006, 176, 3625-3634.	0.4	91
124	The T cell antigen receptor expressed by VÂ14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12254-12259.	3.3	90
125	A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens. Immunity, 2014, 40, 105-116.	6.6	90
126	The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Letters in Applied Microbiology, 2002, 34, 233-237.	1.0	88

#	Article	IF	CITATIONS
127	Biosynthesis of mycobacterial arabinogalactan: identification of a novel α(1→3) arabinofuranosyltransferase. Molecular Microbiology, 2008, 69, 1191-1206.	1.2	88
128	Galectin-3 Plays an Important Pro-inflammatory Role in the Induction Phase of Acute Colitis by Promoting Activation of NLRP3 Inflammasome and Production of IL-1β in Macrophages. Journal of Crohn's and Colitis, 2016, 10, 593-606.	0.6	87
129	Mycobacterial arabinan biosynthesis: the use of synthetic arabinoside acceptors in the development of an arabinosyl transfer assay. Glycobiology, 1997, 7, 1121-1128.	1.3	86
130	The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochemical Journal, 2020, 477, 1983-2006.	1.7	86
131	Lysosomal Localization of Murine CD1d Mediated by AP-3 Is Necessary for NK T Cell Development. Journal of Immunology, 2003, 171, 4149-4155.	0.4	85
132	Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology (United) Tj ETQq0 0 0 rgB	T /@værloc	k 1 8 5Tf 50 53
133	Human autoreactive T cells recognize CD1b and phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 380-385.	3.3	85
134	Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochemical Journal, 2002, 363, 437-447.	1.7	84
135	Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13433-13438.	3.3	83
136	Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science, 2020, 368, 1211-1219.	6.0	82
137	Improved Outcomes in NOD Mice Treated with a Novel Th2 Cytokine-Biasing NKT Cell Activator. Journal of Immunology, 2007, 178, 1415-1425.	0.4	81
138	Role of Phosphatidylinositol Mannosides in the Interaction between Mycobacteria and DC-SIGN. Infection and Immunity, 2009, 77, 4538-4547.	1.0	81
139	Mycobacterium tuberculosis Antigen 85A and 85C Structures Confirm Binding Orientation and Conserved Substrate Specificity. Journal of Biological Chemistry, 2004, 279, 36771-36777.	1.6	80
140	Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Molecular Microbiology, 2007, 63, 1345-1359.	1.2	79
141	Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2558-2563.	3.3	76
142	Cutting Edge: Nonglycosidic CD1d Lipid Ligands Activate Human and Murine Invariant NKT Cells. Journal of Immunology, 2008, 180, 6452-6456.	0.4	76
143	Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology (United) Tj ETQq1	1 0,7843 0,7	14 rgBT /Over
144	The role of hydrophobicity in tuberculosis evolution and pathogenicity. Scientific Reports, 2017, 7, 1315.	1.6	75

#	Article	IF	CITATIONS
145	Incorporation of NKT Cell-Activating Glycolipids Enhances Immunogenicity and Vaccine Efficacy of <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin. Journal of Immunology, 2009, 183, 1644-1656.	0.4	74
146	Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in <i>Corynebacterium glutamicum</i> lipomanann biosynthesis, and identification of its orthologue in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2007, 65, 1503-1517.	1.2	73
147	Mannan Chain Length Controls Lipoglycans Signaling via and Binding to TLR2. Journal of Immunology, 2008, 180, 6696-6702.	0.4	73
148	Identification of KasA as the cellular target of an anti-tubercular scaffold. Nature Communications, 2016, 7, 12581.	5.8	72
149	Preparation of Cell-Wall Fractions from Mycobacteria. , 1998, 101, 91-108.		71
150	Structure, function and biosynthesis of the <i>Mycobacterium tuberculosis</i> cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochemical Society Transactions, 2007, 35, 1325-1328.	1.6	71
151	Serum lipids regulate dendritic cell CD1 expression and function. Immunology, 2008, 125, 289-301.	2.0	71
152	Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. Journal of Clinical Investigation, 2010, 120, 2889-2899.	3.9	71
153	The Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Synthase III Activity Is Inhibited by Phosphorylation on a Single Threonine Residue. Journal of Biological Chemistry, 2009, 284, 6414-6424.	1.6	69
154	Tuberculosis in Dr Granville's mummy: a molecular re-examination of the earliest known Egyptian mummy to be scientifically examined and given a medical diagnosis. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 51-56.	1.2	69
155	Studies on (β,1→5) and (β,1→6) linked octyl Galf disaccharides as substrates for mycobacterial galactosyltransferase activity. Bioorganic and Medicinal Chemistry, 2001, 9, 3129-3143.	1.4	68
156	Inhibition of InhA Activity, but Not KasA Activity, Induces Formation of a KasA-containing Complex in Mycobacteria. Journal of Biological Chemistry, 2003, 278, 20547-20554.	1.6	66
157	Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochemical Journal, 2002, 363, 437.	1.7	65
158	Inactivation of Corynebacterium glutamicum NCgl0452 and the Role of MgtA in the Biosynthesis of a Novel Mannosylated Glycolipid Involved in Lipomannan Biosynthesis. Journal of Biological Chemistry, 2007, 282, 4561-4572.	1.6	65
159	Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand α-galactosylceramide bound to mouse CD1d. Journal of Immunological Methods, 2007, 323, 11-23.	0.6	65
160	Lipids and Carbohydrates of <i>Mycobacterium tuberculosis</i> ., 0, , 285-306.		65
161	The 5-Deoxy-5-methylthio-xylofuranose Residue in Mycobacterial Lipoarabinomannan. Absolute Stereochemistry, Linkage Position, Conformation, and Immunomodulatory Activity. Journal of the American Chemical Society, 2006, 128, 5059-5072.	6.6	64
162	The Bovine CD1 Family Contains Group 1 CD1 Proteins, but No Functional CD1d. Journal of Immunology, 2006, 176, 4888-4893	0.4	64

#	Article	IF	CITATIONS
163	Combined Natural Killer T-Cell–Based Immunotherapy Eradicates Established Tumors in Mice. Cancer Research, 2007, 67, 7495-7504.	0.4	64
164	Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology (United Kingdom), 2007, 153, 3314-3322.	0.7	64
165	Non-Replicating Mycobacterium tuberculosis Elicits a Reduced Infectivity Profile with Corresponding Modifications to the Cell Wall and Extracellular Matrix. PLoS ONE, 2014, 9, e87329.	1.1	64
166	Current status and future development of antitubercular chemotherapy. Expert Opinion on Investigational Drugs, 2002, 11, 1033-1049.	1.9	62
167	Expansion and Hyperactivity of CD1d-Restricted NKT Cells during the Progression of Systemic Lupus Erythematosus in (New Zealand Black × New Zealand White)F1 Mice. Journal of Immunology, 2005, 175, 763-770.	0.4	62
168	LosA, a Key Glycosyltransferase Involved in the Biosynthesis of a Novel Family of Glycosylated Acyltrehalose Lipooligosaccharides from Mycobacterium marinum. Journal of Biological Chemistry, 2005, 280, 42124-42133.	1.6	62
169	Mycobacterium tuberculosis Complex Lipid Virulence Factors Preserved in the 17,000-Year-Old Skeleton of an Extinct Bison, Bison antiquus. PLoS ONE, 2012, 7, e41923.	1.1	62
170	Osteological and Biomolecular Evidence of a 7000-Year-Old Case of Hypertrophic Pulmonary Osteopathy Secondary to Tuberculosis from Neolithic Hungary. PLoS ONE, 2013, 8, e78252.	1.1	62
171	Synthetic arabinofuranosyl oligosaccharides as Mycobacterial arabinosyltransferase substrates. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 437-442.	1.0	61
172	Sustained activation and tumor targeting of NKT cells using a CD1d–anti-HER2–scFv fusion protein induce antitumor effects in mice. Journal of Clinical Investigation, 2008, 118, 994-1005.	3.9	61
173	Peripheral NK1.1â^' NKT Cells Are Mature and Functionally Distinct from Their Thymic Counterparts. Journal of Immunology, 2007, 179, 6630-6637.	0.4	60
174	Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. Journal of Experimental Medicine, 2011, 208, 1941-1948.	4.2	60
175	Identification of a novel α(1→6) mannopyranosyltransferase MptB from <i>Corynebacterium glutamicum</i> by deletion of a conserved gene, <i>NCgl1505</i> , affords a lipomannanâ€and lipoarabinomannanâ€deficient mutant. Molecular Microbiology, 2008, 68, 1595-1613.	1.2	59
176	Mycolic acids: deciphering and targeting the <scp>A</scp> chilles' heel of the tubercle bacillus. Molecular Microbiology, 2015, 98, 7-16.	1.2	59
177	Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nature Immunology, 2017, 18, 683-693.	7.0	59
178	Fine Specificity of TCR Complementarity-Determining Region Residues and Lipid Antigen Hydrophilic Moieties in the Recognition of a CD1-Lipid Complex. Journal of Immunology, 2002, 168, 3933-3940.	0.4	58
179	Distinct Endosomal Trafficking Requirements for Presentation of Autoantigens and Exogenous Lipids by Human CD1d Molecules. Journal of Immunology, 2007, 178, 6181-6190.	0.4	58
180	Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity a aDetails for the preparation of the thiolactomycin analogues shown in Table 1 are available as supplementary data in Microbiology Online (http://mic.sgmjournals.org) Microbiology (United Kingdom), 2002, 148, 3101-3109.	0.7	57

#	Article	IF	CITATIONS
181	Transposon Mutagenesis of Mb0100 at the ppe1 - nrp Locus in Mycobacterium bovis Disrupts Phthiocerol Dimycocerosate (PDIM) and Glycosylphenol-PDIM Biosynthesis, Producing an Avirulent Strain with Vaccine Properties At Least Equal to Those of M. bovis BCG. Journal of Bacteriology, 2005, 187, 2267-2277.	1.0	57
182	Human tuberculosis predates domestication in ancient Syria. Tuberculosis, 2015, 95, S4-S12.	0.8	57
183	THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nature Microbiology, 2016, 1, 15006.	5.9	57
184	Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nature Communications, 2017, 8, 16081.	5.8	57
185	Synthesis and biological evaluation of new inhibitors of UDP-Galf transferase—a key enzyme in M. tuberculosis cell wall biosynthesis. Organic and Biomolecular Chemistry, 2004, 2, 2418-2420.	1.5	56
186	Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol. Molecular Microbiology, 2005, 57, 1113-1126.	1.2	55
187	NKT cells direct monocytes into a DC differentiation pathway. Journal of Leukocyte Biology, 2007, 81, 1224-1235.	1.5	55
188	Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics. Bioorganic and Medicinal Chemistry, 2010, 18, 2651-2663.	1.4	55
189	The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module. PLoS Pathogens, 2011, 7, e1001299.	2.1	55
190	Probing the Mechanism of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH. Journal of Biological Chemistry, 2005, 280, 32539-32547.	1.6	54
191	CD1a and CD1c Activate Intrathyroidal T Cells during Graves' Disease and Hashimoto's Thyroiditis. Journal of Immunology, 2005, 174, 3773-3780.	0.4	54
192	Temperature-induced changes in the cell-wall components of Mycobacterium thermoresistibile. Microbiology (United Kingdom), 2002, 148, 3145-3154.	0.7	54
193	Platensimycin Activity against Mycobacterial β-Ketoacyl-ACP Synthases. PLoS ONE, 2009, 4, e6306.	1.1	54
194	Biphenyl-Based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3685-3688.	1.0	53
195	Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology (United Kingdom), 2007, 153, 4166-4173.	0.7	53
196	The molecular bases of δ/αβ T cell–mediated antigen recognition. Journal of Experimental Medicine, 2014, 211, 2599-2615.	4.2	52
197	Alteration of the relative levels of iNKT cell subsets is associated with chronic mycobacterial infections. Clinical Immunology, 2008, 127, 214-224.	1.4	51
198	α-Calactosylceramide as a Therapeutic Agent for Pulmonary <i>Mycobacterium tuberculosis</i> Infection. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 841-847.	2.5	51

#	Article	IF	CITATIONS
199	Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets. Future Microbiology, 2012, 7, 129-147.	1.0	51
200	Discrimination between bacterial phenotypes using glyco-nanoparticles and the impact of polymer coating on detection readouts. Journal of Materials Chemistry B, 2014, 2, 1490-1498.	2.9	51
201	Whole Cell Target Engagement Identifies Novel Inhibitors of <i>Mycobacterium tuberculosis</i> Decaprenylphosphoryl-12- <scp>d</scp> -ribose Oxidase. ACS Infectious Diseases, 2015, 1, 615-626.	1.8	51
202	Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO Journal, 2006, 25, 2989-2999.	3.5	50
203	Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2007, 153, 513-520.	0.7	50
204	Expression of CD1d Molecules by Human Schwann Cells and Potential Interactions with Immunoregulatory Invariant NK T Cells. Journal of Immunology, 2006, 177, 5226-5235.	0.4	49
205	Modular Approach to Triazole-Linked 1,6-α- <scp>d</scp> -Oligomannosides to the Discovery of Inhibitors of <i>Mycobacterium tuberculosis</i> Cell Wall Synthetase. Journal of Organic Chemistry, 2010, 75, 6326-6336.	1.7	48
206	A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infection, Genetics and Evolution, 2015, 31, 250-256.	1.0	48
207	Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Scientific Reports, 2017, 7, 9430.	1.6	48
208	Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses. Journal of Immunology, 2019, 202, 3404-3411.	0.4	48
209	The Structure of Mycobacterium tuberculosis MPT51 (FbpC1) Defines a New Family of Non-catalytic α/β Hydrolases. Journal of Molecular Biology, 2004, 335, 519-530.	2.0	47
210	Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase mtFabH. PLoS ONE, 2009, 4, e5617.	1.1	47
211	NKT Cell Subsets Mediate Differential Proatherogenic Effects in ApoE ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 671-677.	1.1	47
212	Activation state and intracellular trafficking contribute to the repertoire of endogenous glycosphingolipids presented by CD1d. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3052-3057.	3.3	47
213	A truncated lipoglycan from mycobacteria with altered immunological properties. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2634-2639.	3.3	47
214	Mycobacterium leprae genotype amplified from an archaeological case of lepromatous leprosy in Central Asia. Journal of Archaeological Science, 2009, 36, 2408-2414.	1.2	46
215	Polyprenyl Phosphate Biosynthesis inMycobacterium tuberculosis and Mycobacterium smegmatis. Journal of Bacteriology, 2000, 182, 5771-5778.	1.0	45
216	Disruption of Cg-Ppm1, a Polyprenyl Monophosphomannose Synthase, and the Generation of Lipoglycan-less Mutants in Corynebacterium glutamicum. Journal of Biological Chemistry, 2003, 278, 40842-40850.	1.6	45

#	Article	IF	CITATIONS
217	Presentation of alpha-galactosylceramide by murine CD1d to natural killer T cells is facilitated by plasma membrane glycolipid rafts. Immunology, 2004, 112, 386-396.	2.0	45
218	A Simple Mycobacterial Monomycolated Glycerol Lipid Has Potent Immunostimulatory Activity. Journal of Immunology, 2009, 182, 424-432.	0.4	45
219	Clycosylation of the phosphate binding protein, PstS, in <i>Streptomyces coelicolor</i> by a pathway that resembles protein Oâ€mannosylation in eukaryotes. Molecular Microbiology, 2009, 71, 421-433.	1.2	45
220	Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein and Cell, 2010, 1, 82-95.	4.8	45
221	Stimulation of mycolic acid biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell-wall preparation from Mycobacterium smegmatis. Lipids and Lipid Metabolism, 1993, 1167, 182-188.	2.6	44
222	Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase. Immunology Letters, 2008, 117, 81-90.	1.1	44
223	Synthesis of the naringinase inhibitors l-swainsonine and related 6-C-methyl-l-swainsonine analogues: (6R)-C-methyl-l-swainsonine is a more potent inhibitor of l-rhamnosidase by an order of magnitude than l-swainsonine. Tetrahedron Letters, 2008, 49, 179-184.	0.7	44
224	Detection and Strain Typing of Ancient Mycobacterium leprae from a Medieval Leprosy Hospital. PLoS ONE, 2013, 8, e62406.	1.1	44
225	Phosphatidylinositol synthesis in mycobacteria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1436, 437-450.	1.2	43
226	Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Letters in Applied Microbiology, 2005, 40, 201-206.	1.0	43
227	Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Molecular Microbiology, 2006, 59, 181-192.	1.2	43
228	Loss of a Mycobacterial Gene Encoding a Reductase Leads to an Altered Cell Wall Containing β-oxo- Mycolic Acid Analogs and Accumulation of Ketones. Chemistry and Biology, 2008, 15, 930-939.	6.2	43
229	Sequence and Analysis of a Plasmid-Encoded Mercury Resistance Operon from <i>Mycobacterium marinum</i> Identifies MerH, a New Mercuric Ion Transporter. Journal of Bacteriology, 2009, 191, 439-444.	1.0	43
230	The Mechanism of Splenic Invariant NKT Cell Activation Dictates Localization In Vivo. Journal of Immunology, 2013, 191, 572-582.	0.4	43
231	Ligand-dependent downregulation of MR1 cell surface expression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10465-10475.	3.3	43
232	Synthetic mannosides act as acceptors for mycobacterial $\hat{l}\pm 1$ -6 mannosyltransferase. Bioorganic and Medicinal Chemistry, 2001, 9, 815-824.	1.4	42
233	Purification and Biochemical Characterization of Mycobacterium tuberculosis SuhB, an Inositol Monophosphatase Involved in Inositol Biosynthesis. Biochemistry, 2002, 41, 4392-4398.	1.2	42
234	In Vivo Interaction between the Polyprenol Phosphate Mannose Synthase Ppm1 and the Integral Membrane Protein Ppm2 from Mycobacterium smegmatis Revealed by a Bacterial Two-hybrid System. Journal of Biological Chemistry, 2003, 278, 2242-2248.	1.6	42

#	Article	IF	CITATIONS
235	Acetylene-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 373-376.	1.0	42
236	Design, synthesis, biochemical evaluation and antimycobacterial action of phosphonate inhibitors of antigen 85C, a crucial enzyme involved in biosynthesis of the mycobacterial cell wall. European Journal of Medicinal Chemistry, 2007, 42, 54-63.	2.6	42
237	Saposins utilize two strategies for lipid transfer and CD1 antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4357-4364.	3.3	42
238	Lcp1 Is a Phosphotransferase Responsible for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis. MBio, 2016, 7, .	1.8	42
239	Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death. Glycobiology, 2009, 19, 743-755.	1.3	41
240	Mouse and human iNKT cell agonist Î ² -mannosylceramide reveals a distinct mechanism of tumor immunity. Journal of Clinical Investigation, 2011, 121, 683-694.	3.9	41
241	Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology, 2011, 21, 410-425.	1.3	41
242	Unexpected Link between Lipooligosaccharide Biosynthesis and Surface Protein Release in Mycobacterium marinum. Journal of Biological Chemistry, 2012, 287, 20417-20429.	1.6	41
243	A Chemical Proteomics Approach to Profiling the ATP-binding Proteome of Mycobacterium tuberculosis. Molecular and Cellular Proteomics, 2013, 12, 1644-1660.	2.5	41
244	Studies on n-Octyl-5-(α-d-arabinofuranosyl)-β-d-galactofuranosides for Mycobacterial Glycosyltransferase Activity. Bioorganic and Medicinal Chemistry, 2002, 10, 923-928.	1.4	40
245	Symmetrical and unsymmetrical analogues of isoxyl; active agents against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4743-4747.	1.0	40
246	Mycobacterial Dihydrofolate Reductase Inhibitors Identified Using Chemogenomic Methods and In Vitro Validation. PLoS ONE, 2015, 10, e0121492.	1.1	40
247	Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells. Journal of Immunology, 2015, 195, 2540-2551.	0.4	40
248	Structural determination of lipid antigens captured at the CD1d–T-cell receptor interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8348-8353.	3.3	40
249	Studies on α(1→5) linked octyl arabinofuranosyl disaccharides for mycobacterial arabinosyl transferase activity. Bioorganic and Medicinal Chemistry, 2001, 9, 3145-3151.	1.4	39
250	Direct Measurement of Antigen Binding Properties of CD1 Proteins Using Fluorescent Lipid Probes. Journal of Biological Chemistry, 2004, 279, 299-310.	1.6	39
251	Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-d-arabinose metabolism. Glycobiology, 2006, 16, 1073-1081.	1.3	39
252	4Tuberculosis Chemotherapy: Recent Developments and Future Perspectives. Progress in Medicinal Chemistry, 2007, 45, 169-203.	4.1	39

#	Article	IF	CITATIONS
253	IL-2 triggers specific signaling pathways in human NKT cells leading to the production of pro- and anti-inflammatory cytokines. Journal of Leukocyte Biology, 2008, 84, 224-233.	1.5	39
254	Natural killer T-cell autoreactivity leads to a specialized activation state. Blood, 2008, 112, 4128-4138.	0.6	39
255	Novel Generation Mycobacterial Adjuvant Based on Liposome-Encapsulated Monomycoloyl Glycerol from Mycobacterium bovis Bacillus Calmette-Guérin. Journal of Immunology, 2009, 183, 2294-2302.	0.4	39
256	Identification of novel diphenyl urea inhibitors of Mt-GuaB2 active against Mycobacterium tuberculosis. Microbiology (United Kingdom), 2011, 157, 290-299.	0.7	39
257	Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1. Scientific Reports, 2018, 8, 13473.	1.6	39
258	Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunology Letters, 1999, 65, 85-91.	1.1	38
259	IpsA, a novel Lacl-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria. BMC Biology, 2013, 11, 122.	1.7	38
260	Inhibition of naringinase (L-rhamnosidase) by piperidine analogues of L-rhamnose: Scaffolds for libraries incorporating trihydroxypipecolic acids. Tetrahedron Letters, 1996, 37, 8569-8572.	0.7	37
261	Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expression and Purification, 2008, 58, 332-341.	0.6	37
262	Synthesis of a Versatile Building Block for the Preparation of 6- <i>N</i> -Derivatized α-Galactosyl Ceramides: Rapid Access to Biologically Active Glycolipids. Journal of Organic Chemistry, 2011, 76, 320-323.	1.7	37
263	Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4753-61.	3.3	37
264	<scp>CD</scp> 1dâ€mediated activation of group 3 innate lymphoid cells drives <scp>IL</scp> â€22 production. EMBO Reports, 2017, 18, 39-47.	2.0	37
265	Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology, 2007, 17, 210-219.	1.3	36
266	Natural killer T ell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology, 2008, 123, 45-56.	2.0	36
267	Vβ2 natural killer T cell antigen receptor-mediated recognition of CD1d-glycolipid antigen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19007-19012.	3.3	36
268	Antigen Specificity of Type I NKT Cells Is Governed by TCR β-Chain Diversity. Journal of Immunology, 2015, 195, 4604-4614.	0.4	36
269	Ancient mycobacterial lipids: Key reference biomarkers in charting theÂevolution of tuberculosis. Tuberculosis, 2015, 95, S133-S139.	0.8	36
270	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie - International Edition, 2017, 56, 13011-13015.	7.2	36

#	Article	IF	CITATIONS
271	Phosphonate inhibitors of antigen 85C, a crucial enzyme involved in the biosynthesis of the Mycobacterium tuberculosis cell wall. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3559-3562.	1.0	35
272	Acceptor Substrate Discrimination in Phosphatidyl-myo-inositol Mannoside Synthesis. Journal of Biological Chemistry, 2010, 285, 37741-37752.	1.6	35
273	7000 year-old tuberculosis cases from Hungary – Osteological and biomolecular evidence. Tuberculosis, 2015, 95, S13-S17.	0.8	35
274	Osteological, Biomolecular and Geochemical Examination of an Early Anglo-Saxon Case of Lepromatous Leprosy. PLoS ONE, 2015, 10, e0124282.	1.1	35
275	Mimics of l-rhamnose: Anomeric spirohydantoins and diketopiperazines-approaches to novel N-linked glycopeptides of rhamnofuranose. Tetrahedron: Asymmetry, 1996, 7, 387-390.	1.8	34
276	Mimics of l-rhamnose: Analogues of rhamnopyranose containing a constituent α-amino acid at the anomeric position. A rhamnopyranose analogue of hydantocidin. Tetrahedron: Asymmetry, 1996, 7, 391-394.	1.8	34
277	Synthesis of β-D-arabinofuranosyl-1-monophosphoryl polyprenols: Examination of their function as mycobacterial arabinosyl transferase donors. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 951-954.	1.0	34
278	Defects in glycopeptidolipid biosynthesis confer phage 13 resistance in Mycobacterium smegmatis. Microbiology (United Kingdom), 2009, 155, 4050-4057.	0.7	34
279	Biomolecular archaeology of ancient tuberculosis: response to "Deficiencies and challenges in the study of ancient tuberculosis DNA―by Wilbur etÂal. (2009). Journal of Archaeological Science, 2009, 36, 2797-2804.	1.2	34
280	Lipoarabinomannan biosynthesis in <i>Corynebacterineae</i> : the interplay of two α(1→2)â€mannopyranosyltransferases MptC and MptD in mannan branching. Molecular Microbiology, 2011, 80, 1241-1259.	1.2	34
281	Human and Mouse Type I Natural Killer T Cell Antigen Receptors Exhibit Different Fine Specificities for CD1d-Antigen Complex. Journal of Biological Chemistry, 2012, 287, 39139-39148.	1.6	34
282	Benzothiazinones Mediate Killing of Corynebacterineae by Blocking Decaprenyl Phosphate Recycling Involved in Cell Wall Biosynthesis. Journal of Biological Chemistry, 2014, 289, 6177-6187.	1.6	34
283	Atypical natural killer T-cell receptor recognition of CD1d–lipid antigens. Nature Communications, 2016, 7, 10570.	5.8	34
284	Deciphering the molecular basis of mycobacteria and lipoglycan recognition by the C-type lectin Dectin-2. Scientific Reports, 2018, 8, 16840.	1.6	34
285	Structural and functional features of Rhodococcus ruber lipoarabinomannan. Microbiology (United) Tj ETQq1 1 C).784314 0.7	rgBJJ /Overlo
286	Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4288-4291.	1.0	33
287	A Rapid Fluorescence-Based Assay for Classification of iNKT Cell Activating Glycolipids. Journal of the American Chemical Society, 2011, 133, 5198-5201.	6.6	33
288	SAP expression in invariant NKT cells is required for cognate help to support B-cell responses. Blood, 2012, 120, 122-129.	0.6	33

#	Article	IF	CITATIONS
289	Synthesis and recycling of the mycobacterial cell envelope. Current Opinion in Microbiology, 2021, 60, 58-65.	2.3	33
290	Ligation of arabinogalactan to peptidoglycan in the cell wall of Mycobacterium smegmatis requires concomitant synthesis of the two wall polymers. Microbiology (United Kingdom), 2002, 148, 3059-3067.	0.7	33
291	Chemistry of the Lyxose-Containing Mycobacteriophage Receptors ofMycobacteriumphlei/Mycobacterium smegmatisâ€. Biochemistry, 1996, 35, 11812-11819.	1.2	32
292	Characterization of the in vitro synthesized arabinan of mycobacterial cell walls. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 231-234.	1.1	32
293	Congenic Analysis of the NKT Cell Control Gene <i>Nkt2</i> Implicates the Peroxisomal Protein Pxmp4. Journal of Immunology, 2008, 181, 3400-3412.	0.4	32
294	Trehalose-containing lipooligosaccharides of Mycobacterium gordonae: Presence of a mono-O-methyltetra-O-acyltrehalose "core" and branching in the oligosaccharide backbone. Biochemistry, 1993, 32, 12705-12714.	1.2	31
295	Studies on β-d-Gal -(1→4)-α-l-Rha octyl analogues as substrates for mycobacterial galactosyl transferase activity. Bioorganic and Medicinal Chemistry, 1999, 7, 2407-2413.	1.4	31
296	Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5097-5102.	3.3	31
297	α-Galactosylceramide Analogs with Weak Agonist Activity for Human iNKT Cells Define New Candidate Anti-Inflammatory Agents. PLoS ONE, 2010, 5, e14374.	1.1	31
298	Biochemical and Structural Characterization of Mycobacterial Aspartyl-tRNA Synthetase AspS, a Promising TB Drug Target. PLoS ONE, 2014, 9, e113568.	1.1	31
299	Synthesis of methyl (Z)-tetracos-5-enoate and both enantiomers of ethyl (E)-6-methyltetracos-4-enoate: possible intermediates in the biosynthesis of mycolic acids in mycobacteria. Chemistry and Physics of Lipids, 1993, 66, 23-34.	1.5	30
300	Tsukamurella paurometabola Lipoglycan, a New Lipoarabinomannan Variant with Pro-inflammatory Activity. Journal of Biological Chemistry, 2004, 279, 22973-22982.	1.6	30
301	Ancient DNA analysis – An established technique in charting the evolution of tuberculosis and leprosy. Tuberculosis, 2015, 95, S140-S144.	0.8	30
302	Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Scientific Reports, 2018, 8, 3939.	1.6	30
303	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 0, 1, 18.	0.9	30
304	CD38 Is Required for the Peripheral Survival of Immunotolerogenic CD4+Invariant NK T Cells in Nonobese Diabetic Mice. Journal of Immunology, 2006, 177, 2939-2947.	0.4	29
305	X-Ray Crystal Structure of Mycobacterium tuberculosis β-Ketoacyl Acyl Carrier Protein Synthase II (mtKasB). Journal of Molecular Biology, 2007, 366, 469-480.	2.0	29
306	Characterization of the <i>Corynebacterium glutamicum</i> Δ <i>pimB</i> ′ Δ <i>mgtA</i> Double Deletion Mutant and the Role of <i>Mycobacterium tuberculosis</i> Orthologues Rv2188c and Rv0557 in Glycolipid Biosynthesis. Journal of Bacteriology, 2009, 191, 4465-4472.	1.0	29

#	Article	IF	CITATIONS
307	New CD1d agonists: Synthesis and biological activity of 6″-triazole-substituted α-galactosyl ceramides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4348-4352.	1.0	29
308	Lipid biomarkers provide evolutionary signposts for the oldest known cases of tuberculosis. Tuberculosis, 2015, 95, S127-S132.	0.8	29
309	The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E772-81.	3.3	29
310	Identification of novel benzothiopyranone compounds against Mycobacterium tuberculosis through scaffold morphing from benzothiazinones. European Journal of Medicinal Chemistry, 2018, 160, 157-170.	2.6	29
311	Glycolipid targets of CD1-mediated T-cell responses. Immunology, 2001, 104, 243-251.	2.0	28
312	Modified mannose disaccharides as substrates and inhibitors of a polyprenol monophosphomannose-dependent α-(1→6)-mannosyltransferase involved in mycobacterial lipoarabinomannan biosynthesis. Bioorganic and Medicinal Chemistry, 2005, 13, 1083-1094.	1.4	28
313	Synthetic disaccharide analogs as potential substrates and inhibitors of a mycobacterial polyprenol monophosphomannose-dependent α-(1→6)-mannosyltransferase. Tetrahedron: Asymmetry, 2005, 16, 553-567.	1.8	28
314	An N-Linked Glycan Modulates the Interaction between the CD1d Heavy Chain and β2-Microglobulin. Journal of Biological Chemistry, 2006, 281, 40369-40378.	1.6	28
315	Structural characterization and functional properties of a novel lipomannan variant isolated from a Corynebacterium glutamicum pimB′ mutant. Antonie Van Leeuwenhoek, 2008, 94, 277-287.	0.7	28
316	Critical Role for CD1d-Restricted Invariant NKT Cells in Stimulating Intrahepatic CD8 T-Cell Responses to Liver Antigen. Gastroenterology, 2008, 134, 2132-2143.	0.6	28
317	Invariant natural killer T cell–natural killer cell interactions dictate transplantation outcome after α-galactosylceramide administration. Blood, 2009, 113, 5999-6010.	0.6	28
318	A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-Î ³ Production. Journal of Immunology, 2015, 195, 924-933.	0.4	28
319	Cognate interaction with iNKT cells expands IL-10–producing B regulatory cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12474-12479.	3.3	28
320	Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology, 2019, 236, 1653-1670.	1.5	28
321	Targeting mitochondrial dysfunction in MAIT cells limits IL-17 production in obesity. Cellular and Molecular Immunology, 2020, 17, 1193-1195.	4.8	28
322	Characterisation of phenolic glycolipids from Mycobacterium marinum. Lipids and Lipid Metabolism, 1990, 1042, 176-181.	2.6	27
323	Identification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea. Biochemical Journal, 2003, 372, 821-829.	1.7	27
324	ldentification of a Glycosyltransferase from Mycobacterium marinum Involved in Addition of a Caryophyllose Moiety in Lipooligosaccharides. Journal of Bacteriology, 2011, 193, 2336-2340.	1.0	27

#	Article	IF	CITATIONS
325	Synthesis of α-Glucan in Mycobacteria Involves a Hetero-octameric Complex of Trehalose Synthase TreS and Maltokinase Pep2. ACS Chemical Biology, 2013, 8, 2245-2255.	1.6	27
326	Selectfluor and NFSI <i>exo</i> â€Glycal Fluorination Strategies Applied to the Enhancement of the Binding Affinity of Galactofuranosyltransferase Gl <i>f</i> T2 Inhibitors. Chemistry - A European Journal, 2014, 20, 15208-15215.	1.7	27
327	Identification of a Desaturase Involved in Mycolic Acid Biosynthesis in Mycobacterium smegmatis. PLoS ONE, 2016, 11, e0164253.	1.1	27
328	Structural and functional analysis of the solute-binding protein UspC from <i>Mycobacterium tuberculosis</i> that is specific for amino sugars. Open Biology, 2016, 6, 160105.	1.5	27
329	Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surface, 2020, 6, 100044.	1.5	27
330	Further structural definition of a new family of glycopeptidolipids from Mycobacterium xenopi. Biochemistry, 1993, 32, 347-355.	1.2	26
331	Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cellular Microbiology, 2013, 15, 2093-2108.	1.1	26
332	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 2016, 1, 18.	0.9	26
333	Ppm1-Encoded Polyprenyl Monophosphomannose Synthase Activity Is Essential for Lipoglycan Synthesis and Survival in Mycobacteria. PLoS ONE, 2012, 7, e48211.	1.1	26
334	Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. Microbiology (United Kingdom), 2005, 151, 2087-2095.	0.7	25
335	EmbR2, a structural homologue of EmbR, inhibits the <i>Mycobacterium tuberculosis</i> kinase/substrate pair PknH/EmbR. Biochemical Journal, 2008, 410, 309-317.	1.7	25
336	Deletion of manC in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant. Microbiology (United Kingdom), 2012, 158, 1908-1917.	0.7	25
337	Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells. Veterinary Research, 2012, 43, 54.	1.1	25
338	Towards multivalent CD1d ligands: synthesis and biological activity of homodimeric α-galactosyl ceramide analogues. Carbohydrate Research, 2012, 356, 152-162.	1.1	25
339	Characterization of the specific antigenicity of Mycobacterium fortuitum. Biochemistry, 1992, 31, 6504-6509.	1.2	24
340	Characterization and regulation of inositol monophosphatase activity in Mycobacterium smegmatis. Biochemical Journal, 2002, 361, 385-390.	1.7	24
341	A Lipomannan Variant with Strong TLR-2-dependent Pro-inflammatory Activity in Saccharothrix aerocolonigenes. Journal of Biological Chemistry, 2005, 280, 28347-28356.	1.6	24
342	Modulation of CD1d-restricted NKT cell responses by CD4. Journal of Leukocyte Biology, 2007, 82, 1455-1465.	1.5	24

#	Article	IF	CITATIONS
343	Glycomimetic Inhibitors of Mycobacterial Glycosyltransferases: Targeting the TB Cell Wall. ChemBioChem, 2008, 9, 2197-2199.	1.3	24
344	Amide Analogues of CD1d Agonists Modulate <i>i</i> NKT-Cell-Mediated Cytokine Production. ACS Chemical Biology, 2012, 7, 847-855.	1.6	24
345	Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE, 2014, 9, e108383.	1.1	24
346	Discovery of Novel Thiophene-arylamide Derivatives as DprE1 Inhibitors with Potent Antimycobacterial Activities. Journal of Medicinal Chemistry, 2021, 64, 6241-6261.	2.9	24
347	CD1a selectively captures endogenous cellular lipids that broadly block T cell response. Journal of Experimental Medicine, 2021, 218, .	4.2	24
348	The ppm Operon Is Essential for Acylation and Glycosylation of Lipoproteins in Corynebacterium glutamicum. PLoS ONE, 2012, 7, e46225.	1.1	24
349	New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, and their implications for phage resistance in mycobacteria. Carbohydrate Research, 1994, 251, 99-114.	1.1	23
350	Antimycobacterial Activity and Mechanism of Action of NAS-91. Antimicrobial Agents and Chemotherapy, 2008, 52, 1162-1166.	1.4	23
351	Synthesis and biological activity of α-glucosyl C24:0 and C20:2 ceramides. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3475-3478.	1.0	23
352	Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiology Letters, 2012, 330, 10-16.	0.7	23
353	Positive Diagnosis of Ancient Leprosy and Tuberculosis Using Ancient DNA and Lipid Biomarkers. Diversity, 2017, 9, 46.	0.7	23
354	Identification of Novel Mt-Guab2 Inhibitor Series Active against M. tuberculosis. PLoS ONE, 2012, 7, e33886.	1.1	23
355	Mycolic acid biosynthesis: definition and targeting of the Claisen condensation step. Lipids and Lipid Metabolism, 1997, 1346, 275-284.	2.6	22
356	Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2013, 159, 726-736.	0.7	22
357	Genetics of Mycobacterial Arabinogalactan and Lipoarabinomannan Assembly. Microbiology Spectrum, 2014, 2, MGM2-0013-2013.	1.2	22
358	Pathophysiological Implications of Cell Envelope Structure in Mycobacterium tuberculosis and Related Taxa. , 0, , .		22
359	Novel inhibitors of Mycobacterium tuberculosis GuaB2 identified by a target based high-throughput phenotypic screen. Scientific Reports, 2016, 6, 38986.	1.6	22
360	Cytidine diphosphate-diacylglycerol synthesis in Mycobacterium smegmatis. Biochemical Journal, 2002, 367, 157-162.	1.7	21

#	Article	IF	CITATIONS
361	Arabinofuranose disaccharide analogs as inhibitors of Mycobacterium tuberculosis. Tetrahedron, 2003, 59, 10239-10248.	1.0	21
362	Synthesis of mannopyranose disaccharides as photoaffinity probes for mannosyltransferases in Mycobacterium tuberculosis. Carbohydrate Research, 2004, 339, 683-691.	1.1	21
363	Chemoenzymatic synthesis of feruloyl d-arabinose as a potential anti-mycobacterial agent. Biotechnology Letters, 2007, 29, 1771-1774.	1.1	21
364	Structure of the diaminopimelate epimerase DapF fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 383-387.	2.5	21
365	Characterization of a β-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis. Microbiology (United Kingdom), 2010, 156, 1975-1982.	0.7	21
366	Modular Synthesis of Diverse Natural Productâ€Like Macrocycles: Discovery of Hits with Antimycobacterial Activity. Chemistry - A European Journal, 2017, 23, 7207-7211.	1.7	21
367	Differing roles of CD1d2 and CD1d1 proteins in type I natural killer T cell development and function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1204-E1213.	3.3	21
368	Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23671-23681.	3.3	21
369	Mycobacterial drug discovery. RSC Medicinal Chemistry, 2020, 11, 1354-1365.	1.7	21
370	Structural characterization of a partially arabinosylated lipoarabinomannan variant isolated from a Corynebacterium glutamicum ubiA mutant. Microbiology (United Kingdom), 2007, 153, 2621-2629.	0.7	21
371	Mimics ofl-rhamnose: Synthesis of C-glycosides of L-rhamnofuranose and an α-azidoester as divergent intermediates for combinatorial generation of rhamnofuranose libraries. Tetrahedron: Asymmetry, 1996, 7, 383-386.	1.8	20
372	The synthesis of both enantiomers of lactobacillic acid and mycolic acid analogues. Tetrahedron Letters, 1999, 40, 6689-6692.	0.7	20
373	BCR targeting of biotin-α-galactosylceramide leads to enhanced presentation on CD1d and requires transport of BCR to CD1d-containing endocytic compartments. International Immunology, 2005, 17, 899-908.	1.8	20
374	Adjuvant properties of a simplified C32 monomycolyl glycerol analogue. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2029-2032.	1.0	20
375	Regulation of CD1 Antigen-presenting Complex Stability. Journal of Biological Chemistry, 2010, 285, 11937-11947.	1.6	20
376	The Mycobacterial Cell Envelope. Journal of Pharmacy and Pharmacology, 2011, 49, 25-30.	1.2	20
377	Gold nanoparticle-linked analysis of carbohydrate–protein interactions, and polymeric inhibitors, using unlabelled proteins; easy measurements using a â€~simple' digital camera. Journal of Materials Chemistry B, 2013, 1, 2665.	2.9	20
378	Identification and characterization of aspartyl-tRNA synthetase inhibitors against Mycobacterium tuberculosis by an integrated whole-cell target-based approach. Scientific Reports, 2018, 8, 12664.	1.6	20

#	Article	IF	CITATIONS
379	Evasion of MAIT cell recognition by the African <i>Salmonella</i> Typhimurium ST313 pathovar that causes invasive disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20717-20728.	3.3	20
380	Re-emergence of tuberculosis: strategies and treatment. Expert Opinion on Investigational Drugs, 2002, 11, 153-157.	1.9	19
381	Novel prenyl-linked benzophenone substrate analogues of mycobacterial mannosyltransferases. Biochemical Journal, 2004, 382, 905-912.	1.7	19
382	Oligosaccharides as inhibitors of mycobacterial arabinosyltransferases. Di- and trisaccharides containing C-3 modified arabinofuranosyl residues. Bioorganic and Medicinal Chemistry, 2005, 13, 1369-1379.	1.4	19
383	Disaccharide analogs as probes for glycosyltransferases in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2007, 15, 5629-5650.	1.4	19
384	Exploring the Substrate Specificity of a Mycobacterial Polyprenol Monophosphomannoseâ€Dependent αâ€{1→6)â€Mannosyltransferase. ChemBioChem, 2008, 9, 267-278.	1.3	19
385	Synthesis and biological evaluation of NAS-21 and NAS-91 analogues as potential inhibitors of the mycobacterial FAS-II dehydratase enzyme Rv0636. Microbiology (United Kingdom), 2008, 154, 1866-1875.	0.7	19
386	Synthesis of deoxygenated α(1→5)-linked arabinofuranose disaccharides as substrates and inhibitors of arabinosyltransferases of Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2009, 17, 872-881.	1.4	19
387	Tuberculosis diagnostics: overcoming ancient challenges with modern solutions. Emerging Topics in Life Sciences, 2020, 4, 435-448.	1.1	19
388	Synthesis and biological evaluation of a C5-biphenyl thiolactomycin library. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5643-5646.	1.0	18
389	Human CD4 ⁺ invariant NKT cells are involved in antibacterial immunity against <i>Brucella suis</i> through CD1dâ€dependent but CD4â€independent mechanisms. European Journal of Immunology, 2009, 39, 1025-1035.	1.6	18
390	Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3386-3388.	1.0	18
391	The hydrolase LpqI primes mycobacterial peptidoglycan recycling. Nature Communications, 2019, 10, 2647.	5.8	18
392	Regulation of Cell Wall Synthesis and Growth. Current Molecular Medicine, 2007, 7, 247-276.	0.6	17
393	An α-galactosylceramide C20:2 N-acyl variant enhances anti-inflammatory and regulatory T cell-independent responses that prevent type 1 diabetes. Clinical and Experimental Immunology, 2010, 160, 185-198.	1.1	17
394	Disruption of Mycobacterial AftB Results in Complete Loss of Terminal β(1 → 2) Arabinofuranose Residues of Lipoarabinomannan. ACS Chemical Biology, 2017, 12, 183-190.	1.6	17
395	Characterization of mycobacterial protein glycosyltransferase activity using synthetic peptide acceptors in a cell-free assay. Clycobiology, 2002, 12, 427-434.	1.3	16
396	New lipophilic phthalimido- and 3-phenoxybenzyl sulfonates: Inhibition of antigen 85C mycolyltransferase activity and cytotoxicity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 391-397.	2.5	16

#	Article	IF	CITATIONS
397	Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells. Immunology Letters, 2011, 139, 33-41.	1.1	16
398	The bovine CD1D gene has an unusual gene structure and is expressed but cannot present α-galactosylceramide with a C26 fatty acid. International Immunology, 2013, 25, 91-98.	1.8	16
399	Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. ELife, 2019, 8, .	2.8	16
400	Characteristic new members of the phthiocerol and phenolphtiocerol families fromMycarbacterium ulcerans. FEMS Microbiology Letters, 1990, 66, 11-13.	0.7	15
401	Characterization of the specific antigenicity of representatives of M.senegalense and related bacteria. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1994, 281, 415-432.	0.5	15
402	Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+. BMC Structural Biology, 2007, 7, 55.	2.3	15
403	Phage displayâ€derived recombinant antibodies with TCRâ€like specificity against αâ€galactosylceramide and its analogues in complex with human CD1d molecules. European Journal of Immunology, 2008, 38, 829-840.	1.6	15
404	Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide. BMC Immunology, 2008, 9, 71.	0.9	15
405	Crystal Structure of Bovine CD1b3 with Endogenously Bound Ligands. Journal of Immunology, 2010, 185, 376-386.	0.4	15
406	β-Mannosylceramide Activates Type I Natural Killer T Cells to Induce Tumor Immunity without Inducing Long-Term Functional Anergy. Clinical Cancer Research, 2013, 19, 4404-4411.	3.2	15
407	Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes. Carbohydrate Research, 2017, 438, 26-38.	1.1	15
408	Gram-Positive Bacterial Lipoglycans Based on a Glycosylated Diacylglycerol Lipid Anchor Are Microbe-Associated Molecular Patterns Recognized by TLR2. PLoS ONE, 2013, 8, e81593.	1.1	15
409	Rapid Identification of Immunostimulatory α-Galactosylceramides Using Synthetic Combinatorial Libraries. ACS Combinatorial Science, 2007, 9, 1084-1093.	3.3	14
410	Characterization of <i>Mycobacterium tuberculosis</i> diaminopimelic acid epimerase: paired cysteine residues are crucial for racemization. FEMS Microbiology Letters, 2008, 280, 57-63.	0.7	14
411	Tuberculosis: a balanced diet of lipids and carbohydrates. Biochemical Society Transactions, 2008, 36, 555-565.	1.6	14
412	Synthesis and biological activity of α-l-fucosyl ceramides, analogues of the potent agonist, α-d-galactosyl ceramide KRN7000. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3223-3226.	1.0	14
413	<i>Mycobacterium tuberculosis</i> acyl carrier protein synthase adopts two different pH-dependent structural conformations. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 657-669.	2.5	14
414	Differential Arabinan Capping of Lipoarabinomannan Modulates Innate Immune Responses and Impacts T Helper Cell Differentiation. Journal of Biological Chemistry, 2012, 287, 44173-44183.	1.6	14

#	Article	IF	CITATIONS
415	Invariant natural killer <scp>T</scp> cells are not affected by lysosomal storage in patients with <scp>N</scp> iemannâ€ <scp>P</scp> ick disease type <scp>C</scp> . European Journal of Immunology, 2012, 42, 1886-1892.	1.6	14
416	Nonâ€glycosidic compounds can stimulate both human and mouse <i>i</i> NKT cells. European Journal of Immunology, 2016, 46, 1224-1234.	1.6	14
417	AftD functions as an α1â€ ⁻ →â€ ⁻ 5 arabinofuranosyltransferase involved in the biosynthesis of the mycobacterial cell wall core. Cell Surface, 2018, 1, 2-14.	1.5	14
418	Photoactivable Glycolipid Antigens Generate Stable Conjugates with CD1d for Invariant Natural Killer T Cell Activation. Bioconjugate Chemistry, 2018, 29, 3161-3173.	1.8	14
419	Synthesis of symmetrical C- and pseudo-symmetrical O-linked disaccharide analogs for arabinosyltransferase inhibitory activity in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4527-4530.	1.0	13
420	Structure of <i>Mycobacterium tuberculosis</i> mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT). Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 831-835.	0.7	13
421	Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists. Bioconjugate Chemistry, 2013, 24, 586-594.	1.8	13
422	Morphological and biomolecular evidence for tuberculosis in 8th century AD skeletons from Bélmegyer-Csömöki domb, Hungary. Tuberculosis, 2015, 95, S35-S41.	0.8	13
423	Utilisation of the Prestwick Chemical Library to identify drugs that inhibit the growth of mycobacteria. PLoS ONE, 2019, 14, e0213713.	1.1	13
424	Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2. Protein and Cell, 2020, 11, 505-517.	4.8	13
425	Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2021, 7, 141-152.	1.8	13
426	Mycobacterium marinum MMAR_2380, a predicted transmembrane acyltransferase, is essential for the presence of the mannose cap on lipoarabinomannan. Microbiology (United Kingdom), 2010, 156, 3492-3502.	0.7	13
427	Synthesis of an arabinofuranosyl disaccharide photoaffinity probe for arabinosyltransferase activity in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2749-2752.	1.0	12
428	Identification of a Terminal Rhamnopyranosyltransferase (RptA) Involved in <i>Corynebacterium glutamicum</i> Cell Wall Biosynthesis. Journal of Bacteriology, 2009, 191, 4879-4887.	1.0	12
429	Synthesis of a Novel α-Galactosyl Ceramide Haptenated-Lipid Antigen, a Useful Tool in Demonstrating the Involvement of iNKT Cells in the Production of Antilipid Antibodies. Bioconjugate Chemistry, 2010, 21, 741-747.	1.8	12
430	Stimulation of a shorter duration in the state of anergy by an invariant natural killer T cell agonist enhances its efficiency of protection from type 1 diabetes. Clinical and Experimental Immunology, 2011, 164, 26-41.	1.1	12
431	Elucidation of a protein-protein interaction network involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis. Glycoconjugate Journal, 2014, 31, 475-483.	1.4	12
432	A multi-targeting pre-clinical candidate against drug-resistant tuberculosis. Tuberculosis, 2021, 129, 102104.	0.8	12

#	Article	IF	CITATIONS
433	GSK2556286 Is a Novel Antitubercular Drug Candidate Effective <i>In Vivo</i> with the Potential To Shorten Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	12
434	Synthesis of threitol ceramide and [14C]threitol ceramide, non-glycosidic analogues of the potent CD1d antigen α-galactosyl ceramide. Tetrahedron: Asymmetry, 2009, 20, 747-753.	1.8	11
435	Preparation, Characterisation and Entrapment of a Non-glycosidic Threitol Ceramide into Liposomes for Presentation to Invariant Natural Killer T Cells. Journal of Pharmaceutical Sciences, 2011, 100, 2724-2733.	1.6	11
436	Requirement for Invariant Chain in Macrophages for Mycobacterium tuberculosis Replication and CD1d Antigen Presentation. Infection and Immunity, 2011, 79, 3053-3063.	1.0	11
437	A Subset of CD8αβ+ Invariant NKT Cells in a Humanized Mouse Model. Journal of Immunology, 2015, 195, 1459-1469.	0.4	11
438	Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae. Nature Communications, 2018, 9, 4279.	5.8	11
439	Oldest evidence of tuberculosis in Argentina: A multidisciplinary investigation in an adult male skeleton from Saujil, Tinogasta, Catamarca (905–1030 CE). Tuberculosis, 2020, 125, 101995.	0.8	11
440	Structural definition of the glycopeptidolipids and the pyruvylated, glycosylated acyltrehalose from Mycobacterium butyricum. Carbohydrate Research, 1995, 276, 449-455.	1.1	10
441	Calreticulin Controls the Rate of Assembly of CD1d Molecules in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 38283-38292.	1.6	10
442	MKAN27435 Is Required for the Biosynthesis of Higher Subclasses of Lipooligosaccharides in Mycobacterium kansasii. PLoS ONE, 2015, 10, e0122804.	1.1	10
443	"Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexesâ€. Chemistry and Physics of Lipids, 2016, 194, 49-57.	1.5	10
444	Promotion or Suppression of Murine Intestinal Polyp Development by iNKT Cell Directed Immunotherapy. Frontiers in Immunology, 2019, 10, 352.	2.2	10
445	New members of the phthiocerol and phenolphthiocerol families from Mycobacterium marinum. Journal of the Chemical Society Chemical Communications, 1989, , 1451.	2.0	9
446	Synthesis and properties of methyl 5-(1′R,2′S)-(2-octadecylcycloprop-1-yl)pentanoate and other ï‰-19 chira cyclopropane fatty acids and esters related to mycobacterial mycolic acids. Chemistry and Physics of Lipids, 2004, 127, 35-46.	al 1.5	9
447	New drugs and vaccines for drug-resistantMycobacterium tuberculosisinfections. Expert Review of Vaccines, 2008, 7, 481-497.	2.0	9
448	Distinct Requirements for CD1d Intracellular Transport for Development of Vα14 iNKT Cells. Journal of Immunology, 2009, 183, 1780-1788.	0.4	9
449	Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry, 2015, 23, 7292-7301.	1.4	9
450	The synthesis of methyl 4-(2-octadecylcyclopropen-l-yl)butanoate: a possible inhibitor in mycolic acid biosynthesis. Chemistry and Physics of Lipids, 1993, 66, 35-40.	1.5	8

#	Article	IF	CITATIONS
451	The Cell-Wall Core of Mycobacterium: Structure, Biogenesis and Genetics. , 0, , 240-259.		8
452	Monoclonal antibodies to Mycobacterium tuberculosis CDC 1551 reveal subcellular localization of MPT51. Tuberculosis, 2007, 87, 489-497.	0.8	8
453	Essentials in the use of mycolic acid biomarkers for tuberculosis detection: response to "High-throughput mass spectrometric analysis of 1400-year-old mycolic acids as biomarkers for ancient tuberculosis infection―by. Journal of Archaeological Science, 2010, 37, 2407-2412.	1.2	8
454	Synthesis of truncated analogues of the iNKT cell agonist, α-galactosyl ceramide (KRN7000), and their biological evaluation. Bioorganic and Medicinal Chemistry, 2011, 19, 221-228.	1.4	8
455	The singular Corynebacterium glutamicum Emb arabinofuranosyltransferase polymerises the α(1â€ ⁻ →â€ ⁻ 5) arabinan backbone in the early stages of cell wall arabinan biosynthesis. Cell Surface, 2018, 2, 38-53.	1.5	8
456	Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria. Journal of Biological Chemistry, 2019, 294, 7348-7359.	1.6	8
457	Identification of thiophene-benzenesulfonamide derivatives for the treatment of multidrug-resistant tuberculosis. European Journal of Medicinal Chemistry, 2022, 231, 114145.	2.6	8
458	Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation. Journal of Biological Chemistry, 2013, 288, 16391-16402.	1.6	7
459	Development of a wholeâ€cell highâ€throughput phenotypic screen to identify inhibitors of mycobacterial amino acid biosynthesis. FASEB BioAdvances, 2019, 1, 246-254.	1.3	7
460	Expression of CD1c enhances human invariant NKT cell activation by α-GalCer. Cancer Immunity, 2013, 13, 9.	3.2	7
461	The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. Journal of Biological Chemistry, 2022, 298, 101542.	1.6	7
462	Use of a codon alteration strategy in a novel approach to cloning theMycobacterium tuberculosisdiaminopimelic acid epimerase. FEMS Microbiology Letters, 2006, 262, 39-47.	0.7	6
463	A hybrid of the transhydrogenases from Rhodospirillum rubrum and Mycobacterium tuberculosis catalyses rapid hydride transfer but not the complete, proton-translocating reaction. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 215-223.	0.5	5
464	In contrast to other species, α-Galactosylceramide (α-GalCer) is not an immunostimulatory NKT cell agonist in horses. Developmental and Comparative Immunology, 2015, 49, 49-58.	1.0	5
465	Crystallization and preliminary X-ray diffraction data ofMycobacterium tuberculosisFbpC1 (Rv3803c). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2303-2305.	2.5	4
466	Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexes. Chemistry and Physics of Lipids, 2015, 191, 75-83.	1.5	4
467	Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis- and trans-Infections. International Journal of Molecular Sciences, 2021, 22, 1945.	1.8	4
468	Characteristic new members of the phthiocerol and phenolphthiocerol families from Mycobacterium ulcerans. FEMS Microbiology Letters, 1990, 54, 11-4.	0.7	4

#	Article	IF	CITATIONS
469	Colworth prize lecture 2016: exploiting new biological targets from a whole-cell phenotypic screening campaign for TB drug discovery. Microbiology (United Kingdom), 2017, 163, 1385-1388.	0.7	4
470	Antibiotics and New Inhibitors of the Cell Wall. , 0, , 107-131.		3
471	The multi-target aspect of an MmpL3 inhibitor: The BM212 series of compounds bind EthR2, a transcriptional regulator of ethionamide activation. Cell Surface, 2021, 7, 100068.	1.5	3
472	Sortase A-Cleavable CD1d Identifies Sphingomyelins as Major Class of CD1d-Associated Lipids. Frontiers in Immunology, 0, 13, .	2.2	3
473	Development of a novel secondary phenotypic screen to identify hits within the mycobacterial protein synthesis pipeline. FASEB BioAdvances, 2020, 2, 600-612.	1.3	2
474	Anti-tubercular derivatives of rhein require activation by the monoglyceride lipase Rv0183. Cell Surface, 2020, 6, 100040.	1.5	2
475	PPARÎ ³ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. Journal of Cell Biology, 2006, 175, i1-i1.	2.3	2
476	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie, 2017, 129, 13191-13195.	1.6	1
477	Recognising the broad array of approaches available for the diagnosis of ancient tuberculosis: Comment on †Infectious diseases and Neolithic transformations' (Fuchs et al. 2019 <i>The) Tj ETQq1 1 0.</i>	78 4 3914 rg	gBT1/Overlock
478	Chemical insights into the search for MAIT cells activators. Molecular Immunology, 2021, 129, 114-120.	1.0	1
479	Genetics of Mycobacterial Arabinogalactan and Lipoarabinomannan Assembly. , 0, , 535-557.		1
480	Biphenyl-Based Analogues of Thiolactomycin, Active Against Mycobacterium tuberculosis mtFabH Fatty Acid Condensing Enzyme ChemInform, 2004, 35, no.	0.1	0
481	The Distribution and Origins of Ancient Leprosy. , 2019, , .		0
482	Biochemical and phenotypic characterisation of the Mycobacterium smegmatis transporter UspABC. Cell Surface, 2021, 7, 100052.	1.5	0
483	Twoâ€way regulation of protein expression for identification and validation of onâ€ŧarget inhibitors of <i>Mycobacterium tuberculosis</i> . FASEB Journal, 2022, 36, .	0.2	0