
Rafael Bejar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5078294/publications.pdf Version: 2024-02-01

RAFAFI REIAD

#	Article	IF	CITATIONS
1	Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematological Oncology, 2022, 40, 491-504.	0.8	Ο
2	Improving Patient Understanding and Outcomes in Myelodysplastic Syndromes - An Animated Patient Guide to MDS with Visual Formats of Learning Leukemia Research Reports, 2022, , 100328.	0.2	0
3	The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/DendriticÂNeoplasms. Leukemia, 2022, 36, 1703-1719.	3.3	1,211
4	Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. , 2022, 1, .		259
5	Adoptive transfer of neoantigen-specific T-cell therapy is feasible in older patients with higher-risk myelodysplastic syndrome. Cytotherapy, 2021, 23, 236-241.	0.3	7
6	5-Azacytidine Transiently Restores Dysregulated Erythroid Differentiation Gene Expression in TET2-Deficient Erythroleukemia Cells. Molecular Cancer Research, 2021, 19, 451-464.	1.5	3
7	Indolent Tâ€cell prolymphocytic leukemia with no expression of surface Tâ€cell receptors or surface CD3. International Journal of Laboratory Hematology, 2021, 43, O224-O226.	0.7	3
8	In vitro induction of neoantigen-specific T cells in myelodysplastic syndrome, a disease with low mutational burden. Cytotherapy, 2021, 23, 320-328.	0.3	8
9	How do molecular aberrations guide therapy in MDS?. Best Practice and Research in Clinical Haematology, 2021, 34, 101324.	0.7	Ο
10	Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Medicine, 2020, 26, 1549-1556.	15.2	372
11	<i>SF3B1</i> -mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood, 2020, 136, 157-170.	0.6	195
12	Clonal hematopoiesis in cancer. Experimental Hematology, 2020, 83, 105-112.	0.2	24
13	Wide variation in use and interpretation of gene mutation profiling panels among health care providers of patients with myelodysplastic syndromes: results of a large web-based survey. Leukemia and Lymphoma, 2020, 61, 1455-1464.	0.6	4
14	DNA Methylation Analysis before and during Treatment with Azacitidine Plus Pevonedistat or Azacitidine Alone in Patients with MDS, CMML, and AML Previously Untreated with Hypomethylating Agents. Blood, 2020, 136, 29-30.	0.6	1
15	<i><scp>JAK</scp>2</i> double minutes with resultant simultaneous amplification of <i><scp>JAK</scp>2</i> and <i><scp>CD</scp>274</i> in a therapyâ€related myelodysplastic syndrome evolving into an acute myeloid leukaemia. British Journal of Haematology, 2019, 185, 566-570.	1.2	5
16	Hippo kinase loss contributes to del(20q) hematologic malignancies through chronic innate immune activation. Blood, 2019, 134, 1730-1744.	0.6	17
17	MDS overlap disorders and diagnostic boundaries. Blood, 2019, 133, 1086-1095.	0.6	58
18	Aging Human Hematopoietic Stem Cells Manifest Profound Epigenetic Reprogramming of Enhancers That May Predispose to Leukemia. Cancer Discovery, 2019, 9, 1080-1101.	7.7	119

RAFAEL BEJAR

#	Article	IF	CITATIONS
19	Myelodysplastic syndrome-associated spliceosome gene mutations enhance innate immune signaling. Haematologica, 2019, 104, e388-e392.	1.7	40
20	Managing Clonal Hematopoiesis in Patients With Solid Tumors. Journal of Clinical Oncology, 2019, 37, 7-11.	0.8	60
21	DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Advances, 2019, 3, 2845-2858.	2.5	32
22	Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials. Cancers, 2019, 11, 11.	1.7	46
23	TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia, 2019, 33, 1747-1758.	3.3	195
24	What biologic factors predict for transformation to AML?. Best Practice and Research in Clinical Haematology, 2018, 31, 341-345.	0.7	22
25	Clonal Hematopoiesis in Aging. Current Stem Cell Reports, 2018, 4, 209-219.	0.7	18
26	The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine. Journal of Molecular Biology, 2018, 430, 2875-2899.	2.0	72
27	Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 60-87.	2.3	254
28	The Impact of Somatic and Germline Mutations in Myelodysplastic Syndromes and Related Disorders. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 131-135.	2.3	7
29	Implications of molecular genetic diversity in myelodysplastic syndromes. Current Opinion in Hematology, 2017, 24, 73-78.	1.2	44
30	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.4	116
31	SOHO State of the Art Update and Next Questions: Biology and Treatment of Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 613-620.	0.2	8
32	Computational drug treatment simulations on projections of dysregulated protein networks derived from the myelodysplastic mutanome match clinical response in patients. Leukemia Research, 2017, 52, 1-7.	0.4	14
33	Molecular Data and the IPSS-R: How Mutational Burden Can Affect Prognostication in MDS. Current Hematologic Malignancy Reports, 2017, 12, 461-467.	1.2	25
34	New Insight Into the Biology, Risk Stratification, and Targeted Treatment of Myelodysplastic Syndromes. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 480-494.	1.8	9
35	New Insight Into the Biology, Risk Stratification, and Targeted Treatment of Myelodysplastic Syndromes. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 480-494.	1.8	8
36	Next generation sequencing to reveal potentially actionable alterations in the majority of patients with hematologic malignancies Journal of Clinical Oncology, 2017, 35, e23133-e23133.	0.8	0

RAFAEL BEJAR

#	Article	IF	CITATIONS
37	Connect MDS/AML: design of the myelodysplastic syndromes and acute myeloid leukemia disease registry, a prospective observational cohort study. BMC Cancer, 2016, 16, 652.	1.1	12
38	Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators. Rna, 2016, 22, 1535-1549.	1.6	40
39	Leveraging premalignant biology for immune-based cancer prevention. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10750-10758.	3.3	57
40	Splicing Factor Mutations in Cancer. Advances in Experimental Medicine and Biology, 2016, 907, 215-228.	0.8	45
41	MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood, 2015, 126, 2355-2361.	0.6	280
42	Myelodysplastic Syndromes, Version 2.2015. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 261-272.	2.3	40
43	Myelodysplastic Syndromes Diagnosis: What Is the Role of Molecular Testing?. Current Hematologic Malignancy Reports, 2015, 10, 282-291.	1.2	35
44	Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood, 2015, 126, 9-16.	0.6	1,493
45	DMSO Increases Mutation Scanning Detection Sensitivity of High-Resolution Melting in Clinical Samples. Clinical Chemistry, 2015, 61, 1354-1362.	1.5	9
46	X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation. Journal of Clinical Investigation, 2015, 125, 1665-1669.	3.9	43
47	Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 2015, 126, 907-907.	0.6	85
48	Somatic Mutations Predict Poor Outcome in Patients With Myelodysplastic Syndrome After Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2014, 32, 2691-2698.	0.8	359
49	Role of Casein Kinase 1A1 in the Biology and Targeted Therapy of del(5q) MDS. Cancer Cell, 2014, 26, 509-520.	7.7	158
50	Clinical and genetic predictors of prognosis in myelodysplastic syndromes. Haematologica, 2014, 99, 956-964.	1.7	91
51	Recent developments in myelodysplastic syndromes. Blood, 2014, 124, 2793-2803.	0.6	147
52	TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood, 2014, 124, 2705-2712.	0.6	486
53	Somatic Mutations Indicative of Clonal Hematopoiesis Are Present in a Large Fraction of Cytopenic Patients Who Lack Diagnostic Evidence of MDS. Blood, 2014, 124, 3272-3272.	0.6	7
54	TP53 Mutation Status Divides MDS Patients with Complex Karyotypes into Distinct Prognostic Risk Groups: Analysis of Combined Datasets from the International Working Group for MDS-Molecular Prognosis Committee. Blood, 2014, 124, 532-532.	0.6	6

Rafael Bejar

#	Article	IF	CITATIONS
55	Prognostic models in myelodysplastic syndromes. Hematology American Society of Hematology Education Program, 2013, 2013, 504-510.	0.9	28
56	The importance of subclonal genetic events in MDS. Blood, 2013, 122, 3550-3551.	0.6	11
57	What lies beyond del(5q) in myelodysplastic syndrome?. Haematologica, 2013, 98, 1819-1821.	1.7	13
58	Myelodysplastic Syndromes: Recent Advancements in Risk Stratification and Unmet Therapeutic Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, 33, e256-e270.	1.8	12
59	Myelodysplastic Syndromes: Recent Advancements in Risk Stratification and Unmet Therapeutic Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e256-e270.	1.8	2
60	Validation of a Prognostic Model and the Impact of Mutations in Patients With Lower-Risk Myelodysplastic Syndromes. Journal of Clinical Oncology, 2012, 30, 3376-3382.	0.8	419
61	Detection of Recurrent Mutations by Pooled Targeted Next-Generation Sequencing in MDS Patients Prior to Treatment with Hypomethylating Agents or Stem Cell Transplantation. Blood, 2012, 120, 311-311.	0.6	3
62	Board Practice 1. , 2012, , 1062-1074.		0
63	Unraveling the Molecular Pathophysiology of Myelodysplastic Syndromes. Journal of Clinical Oncology, 2011, 29, 504-515.	0.8	288
64	Clinical Effect of Point Mutations in Myelodysplastic Syndromes. New England Journal of Medicine, 2011, 364, 2496-2506.	13.9	1,444
65	Validation of a Prognostic Model and the Impact of SF3B1, DNMT3A, and Other Mutations in 289 Genetically Characterized Lower Risk MDS Patient Samples. Blood, 2011, 118, 969-969.	0.6	5
66	The Genetic Basis of Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2010, 24, 295-315.	0.9	28
67	Point Mutations In Myelodysplastic Syndromes Are Associated with Clinical Features and Are Independent Predictors of Overall Survival. Blood, 2010, 116, 300-300.	0.6	0
68	MYBL2 Is a Candidate Tumor Suppressor Gene In MDS. Blood, 2010, 116, 1865-1865.	0.6	0
69	Transgenic Calmodulin-Dependent Protein Kinase II Activation: Dose-Dependent Effects on Synaptic Plasticity, Learning, and Memory. Journal of Neuroscience, 2002, 22, 5719-5726.	1.7	92
70	The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex. Neuropharmacology, 2001, 41, 771-778.	2.0	20
71	Myelodysplasia. , 0, , 156-166.		0